Abstract
Let d be an odd square-free integer and \(\zeta _8\) a primitive 8-th root of unity. The purpose of this paper is to investigate the rank of the 2-class group of the fields \(L_d={\mathbb {Q}}(\zeta _8,\sqrt{d})\).

Similar content being viewed by others
References
Azizi, A.: Sur le \(2\)-groupe de classes d’idéaux de \(\mathbb{Q}({\sqrt{d}},i)\). Rend. Circ. Mat. Palermo 48, 71–92 (1999)
Azizi, A.: Unités de certains corps de nombres imaginaires et abéliens sur \(\mathbb{Q}\). Ann. Sci. Math. Québec 23, 15–21 (1999)
Azizi, A., Benhamza, I.: Sur la capitulation des \(2\)-classes d’idéaux de \(\mathbb{Q}({\sqrt{d}},{\sqrt{-2}})\). Ann. Sci. Math. Québec. 29, 1–20 (2005)
Azizi, A., Mouhib, A.: Le \(2\)-rang du groupe de classes de certains corps biquadratiques et applications. Int. J. Math. 15, 169–182 (2004)
Azizi, A., Mouhib, A.: Sur le rang du \(2\)-groupe de classes de \(\mathbb{Q}({\sqrt{m}},{\sqrt{d}})\) où \(m=2\) ou un premier \(p \equiv 1 ~(mod \; 4)\). Trans. Am. Math. Soc. 353, 2741–2752 (2001)
Azizi, A., Taous, M.: Capitulation des \(2\)-classes d’idéaux de \(k=\mathbb{Q}({\sqrt{2p}},i)\). Acta Arith. 131, 103–123 (2008)
Azizi, A., Taous, M.: Déterminations des corps \(k=\mathbb{Q}(\sqrt{d},\sqrt{-1})\) dont les \(2\)-groupes de classes sont de type \((2, 4)\) ou \((2, 2, 2)\). Rend. Istit. Mat. Univ. Trieste 40, 93–116 (2008)
Azizi, A., Zekhnini, A., Taous, M.: On the strongly ambiguous classes of some biquadratic number fields. Math. Bohem. 141, 363–384 (2016)
Brown, E., Parry, C.J.: The \(2\)-class group of certain biquadratic number fields. J. Reine Angew. Math. 295, 61–71 (1977)
Brown, E.: The class number of \(\mathbb{Q}(\sqrt{-p})\) for \(p\equiv 1 ({\rm mod} 8)\) a prime. Proc. Am. Math. Soc. 31, 381–383 (1972)
Brown, E., Parry, C.J.: The \(2\)-class group of biquadratic number fields II. Pacific J. Math. 78, 11–26 (1978)
Chems-Eddin, M.M., Azizi, A., Zekhnini, A.: On an infinite family of imaginary triquadratic number fields. Stud. Fuzziness Soft Comput. 395, 211–215 (2021)
Chems-Eddin, M. M., Azizi, A., Zekhnini, A.: On the \(2\)-class group of some number fields with large degree. arXiv:1911.11198
Chems-Eddin, M.M., Zekhnini, A., Azizi, A.: Units and \(2\)-class field towers of some multiquadratic number fields. Turk. J. Math. 44, 1466–1483 (2020)
Conner, P. E., Hurrelbrink, J.: Class number parity, Ser. Pure Math., vol. 8. World Scientific, Singapore (1988)
Fröhlich, A., Taylor, M.J.: Algebraic Number theory. Cambridge Studies in Advanced Mathematics, vol. 27. Cambridge University Press, Cambridge (1993)
Gras, G.: Sur les \(l\)-classes d’idéaux dans les extensions cycliques relatives de degré premier \(l\). Ann. Inst. Fourier (Grenoble) 23, 1–48 (1973)
Gras, G.: Class Field Theory: From Theory to Practice. Springer, Berlin Heidelberg (2003)
Kaplan, P.: Sur le \(2\)-groupe de classes d’idéaux des corps quadratiques. J. Reine Angew. Math. 283(284), 313–363 (1976)
Kučera, R.: On the parity of the class number of a biquadratic field. J. Number Theory 52, 43–52 (1995)
Lemmermeyer, F.: Ideal class groups of cyclotomic number fields I. Acta Arith. 72, 347–359 (1995)
Lemmermeyer, F.: Kuroda’s class number formula. Acta Arith. 66, 245–260 (1994)
Lemmermeyer, F.: Reciprocity Laws. Springer Monographs in Mathematics, From Euler to Eisenstein. Springer, Berlin (2000)
McCall, T.M., Parry, C.J., Ranalli, R.R.: Imaginary bicyclic biquadratic fields with cyclic \(2\)-class group. J. Number Theory 53, 88–99 (1995)
Scholz, A.: Über die lösbarkeit der gleichung \(t^2-Du^2=-4\). Math. Z. 39, 95–111 (1935)
Wada, H.: On the class number and the unit group of certain algebraic number fields. J. Fac. Sci. Univ. Tokyo 13, 201–209 (1966)
Washington, L.C.: Introduction to Cyclotomic Fields. Graduate Texts in Mathematics, vol. 83. Springer, Berlin (1997)
Acknowledgements
The authors are very grateful to the reviewer for his/her careful and meticulous reading of the paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Azizi, A., Chems-Eddin, M.M. & Zekhnini, A. On the rank of the 2-class group of some imaginary triquadratic number fields. Rend. Circ. Mat. Palermo, II. Ser 70, 1751–1769 (2021). https://doi.org/10.1007/s12215-020-00589-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12215-020-00589-0