Skip to main content
Log in

On the rank of the 2-class group of some imaginary triquadratic number fields

  • Published:
Rendiconti del Circolo Matematico di Palermo Series 2 Aims and scope Submit manuscript

Abstract

Let d be an odd square-free integer and \(\zeta _8\) a primitive 8-th root of unity. The purpose of this paper is to investigate the rank of the 2-class group of the fields \(L_d={\mathbb {Q}}(\zeta _8,\sqrt{d})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Azizi, A.: Sur le \(2\)-groupe de classes d’idéaux de \(\mathbb{Q}({\sqrt{d}},i)\). Rend. Circ. Mat. Palermo 48, 71–92 (1999)

    Article  MathSciNet  Google Scholar 

  2. Azizi, A.: Unités de certains corps de nombres imaginaires et abéliens sur \(\mathbb{Q}\). Ann. Sci. Math. Québec 23, 15–21 (1999)

    MathSciNet  MATH  Google Scholar 

  3. Azizi, A., Benhamza, I.: Sur la capitulation des \(2\)-classes d’idéaux de \(\mathbb{Q}({\sqrt{d}},{\sqrt{-2}})\). Ann. Sci. Math. Québec. 29, 1–20 (2005)

    MathSciNet  MATH  Google Scholar 

  4. Azizi, A., Mouhib, A.: Le \(2\)-rang du groupe de classes de certains corps biquadratiques et applications. Int. J. Math. 15, 169–182 (2004)

    Article  MathSciNet  Google Scholar 

  5. Azizi, A., Mouhib, A.: Sur le rang du \(2\)-groupe de classes de \(\mathbb{Q}({\sqrt{m}},{\sqrt{d}})\)\(m=2\) ou un premier \(p \equiv 1 ~(mod \; 4)\). Trans. Am. Math. Soc. 353, 2741–2752 (2001)

    Article  Google Scholar 

  6. Azizi, A., Taous, M.: Capitulation des \(2\)-classes d’idéaux de \(k=\mathbb{Q}({\sqrt{2p}},i)\). Acta Arith. 131, 103–123 (2008)

    Article  MathSciNet  Google Scholar 

  7. Azizi, A., Taous, M.: Déterminations des corps \(k=\mathbb{Q}(\sqrt{d},\sqrt{-1})\) dont les \(2\)-groupes de classes sont de type \((2, 4)\) ou \((2, 2, 2)\). Rend. Istit. Mat. Univ. Trieste 40, 93–116 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Azizi, A., Zekhnini, A., Taous, M.: On the strongly ambiguous classes of some biquadratic number fields. Math. Bohem. 141, 363–384 (2016)

    Article  MathSciNet  Google Scholar 

  9. Brown, E., Parry, C.J.: The \(2\)-class group of certain biquadratic number fields. J. Reine Angew. Math. 295, 61–71 (1977)

    MathSciNet  MATH  Google Scholar 

  10. Brown, E.: The class number of \(\mathbb{Q}(\sqrt{-p})\) for \(p\equiv 1 ({\rm mod} 8)\) a prime. Proc. Am. Math. Soc. 31, 381–383 (1972)

    Google Scholar 

  11. Brown, E., Parry, C.J.: The \(2\)-class group of biquadratic number fields II. Pacific J. Math. 78, 11–26 (1978)

    Article  MathSciNet  Google Scholar 

  12. Chems-Eddin, M.M., Azizi, A., Zekhnini, A.: On an infinite family of imaginary triquadratic number fields. Stud. Fuzziness Soft Comput. 395, 211–215 (2021)

    Article  MathSciNet  Google Scholar 

  13. Chems-Eddin, M. M., Azizi, A., Zekhnini, A.: On the \(2\)-class group of some number fields with large degree. arXiv:1911.11198

  14. Chems-Eddin, M.M., Zekhnini, A., Azizi, A.: Units and \(2\)-class field towers of some multiquadratic number fields. Turk. J. Math. 44, 1466–1483 (2020)

    Article  MathSciNet  Google Scholar 

  15. Conner, P. E., Hurrelbrink, J.: Class number parity, Ser. Pure Math., vol. 8. World Scientific, Singapore (1988)

  16. Fröhlich, A., Taylor, M.J.: Algebraic Number theory. Cambridge Studies in Advanced Mathematics, vol. 27. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  17. Gras, G.: Sur les \(l\)-classes d’idéaux dans les extensions cycliques relatives de degré premier \(l\). Ann. Inst. Fourier (Grenoble) 23, 1–48 (1973)

    Article  MathSciNet  Google Scholar 

  18. Gras, G.: Class Field Theory: From Theory to Practice. Springer, Berlin Heidelberg (2003)

    Book  Google Scholar 

  19. Kaplan, P.: Sur le \(2\)-groupe de classes d’idéaux des corps quadratiques. J. Reine Angew. Math. 283(284), 313–363 (1976)

    MathSciNet  MATH  Google Scholar 

  20. Kučera, R.: On the parity of the class number of a biquadratic field. J. Number Theory 52, 43–52 (1995)

    Article  MathSciNet  Google Scholar 

  21. Lemmermeyer, F.: Ideal class groups of cyclotomic number fields I. Acta Arith. 72, 347–359 (1995)

    Article  MathSciNet  Google Scholar 

  22. Lemmermeyer, F.: Kuroda’s class number formula. Acta Arith. 66, 245–260 (1994)

    Article  MathSciNet  Google Scholar 

  23. Lemmermeyer, F.: Reciprocity Laws. Springer Monographs in Mathematics, From Euler to Eisenstein. Springer, Berlin (2000)

    Book  Google Scholar 

  24. McCall, T.M., Parry, C.J., Ranalli, R.R.: Imaginary bicyclic biquadratic fields with cyclic \(2\)-class group. J. Number Theory 53, 88–99 (1995)

    Article  MathSciNet  Google Scholar 

  25. Scholz, A.: Über die lösbarkeit der gleichung \(t^2-Du^2=-4\). Math. Z. 39, 95–111 (1935)

    Article  MathSciNet  Google Scholar 

  26. Wada, H.: On the class number and the unit group of certain algebraic number fields. J. Fac. Sci. Univ. Tokyo 13, 201–209 (1966)

    MathSciNet  MATH  Google Scholar 

  27. Washington, L.C.: Introduction to Cyclotomic Fields. Graduate Texts in Mathematics, vol. 83. Springer, Berlin (1997)

    Book  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the reviewer for his/her careful and meticulous reading of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Mahmoud Chems-Eddin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azizi, A., Chems-Eddin, M.M. & Zekhnini, A. On the rank of the 2-class group of some imaginary triquadratic number fields. Rend. Circ. Mat. Palermo, II. Ser 70, 1751–1769 (2021). https://doi.org/10.1007/s12215-020-00589-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12215-020-00589-0

Keywords

Mathematics Subject Classification