Skip to main content
Log in

The drug-dependent five- to six-coordination transition of the heme-Fe atom modulates allosterically human serum heme-albumin reactivity

  • Concepts in catalysis
  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

Human serum albumin (HSA), the most abundant protein in plasma, displays several functions including heme transfer from high- and low-density lipoproteins to hemopexin; therefore, the HSA-heme complex acquires transiently heme-based (pseudo-)enzymatic properties. In particular, ferric human serum heme-albumin (HSA-heme) and ferrous nitrosylated HSA-heme inactivate peroxynitrite, and ferrous HSA-heme catalyzes the conversion of nitrite to nitrogen monoxide. The (pseudo-)enzymatic properties of HSA-heme are modulated allosterically by endogenous and exogenous ligands, such as drugs. The modulation of ligand binding to plasma proteins is relevant not only under physiological conditions but also in the pharmacological therapy management. Here, drug-dependent HSA-heme properties are reviewed from the functional and structural viewpoints. In particular, the drug-dependent five- to six-coordination transition of the heme-Fe atom is at the root of the allosteric modulation of the HSA-heme reactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

FA:

Fatty acid

HSA:

Human serum albumin

HSA-heme:

Human serum heme-albumin

References

  • Ascenzi P, Fasano M (2007) Abacavir modulates peroxynitrite-mediated oxidation of ferrous nitrosylated human serum heme-albumin. Biochem Biophys Res Commun 353:469–474

    Article  CAS  Google Scholar 

  • Ascenzi P, Gianni S (2013) Functional role of transient conformations: rediscovering “chronosteric effects” thirty years later. IUBMB Life 65:836–844

    Article  CAS  Google Scholar 

  • Ascenzi P, Bocedi A, Visca P, Altruda F, Tolosano E, Beringhelli T, Fasano M (2005) Hemoglobin and heme scavenging. IUBMB Life 57:749–759

    Article  CAS  Google Scholar 

  • Ascenzi P, Bocedi A, Visca P, Minetti M, Clementi E (2006) Does CO2 modulate peroxynitrite specificity? IUBMB Life 58:611–613

    Article  CAS  Google Scholar 

  • Ascenzi P, di Masi A, Coletta M, Ciaccio C, Fanali G, Nicoletti FP, Smulevich G, Fasano M (2009) Ibuprofen impairs allosterically peroxynitrite isomerization by ferric human serum heme-albumin. J Biol Chem 284:31006–31017

    Article  CAS  Google Scholar 

  • Ascenzi P, Bolli A, Gullotta F, Fanali G, Fasano M (2010a) Drug binding to Sudlow’s site I impairs allosterically human serum heme-albumin-catalyzed peroxynitrite detoxification. IUBMB Life 62:776–780

    Article  CAS  Google Scholar 

  • Ascenzi P, di Masi A, Sciorati C, Clementi E (2010b) Peroxynitrite—an ugly biofactor? BioFactors 36:264–273

    Article  CAS  Google Scholar 

  • Ascenzi P, Bolli A, di Masi A, Tundo GR, Fanali G, Coletta M, Fasano M (2011) Isoniazid and rifampicin inhibit allosterically heme binding to albumin and peroxynitrite isomerization by heme-albumin. J Biol Inorg Chem 16:97–108

    Article  CAS  Google Scholar 

  • Ascenzi P, Tundo GR, Fanali G, Coletta M, Fasano M (2013) Warfarin modulates the nitrite reductase activity of ferrous human serum heme-albumin. J Biol Inorg Chem 18:939–946

    Article  CAS  Google Scholar 

  • Ascenzi P, Leboffe L, di Masi A, Trezza V, Fanali G, Gioia M, Coletta M, Fasano M (2015) Ligand binding to the FA3–FA4 cleft inhibits the esterase-like activity of human serum albumin. PLoS One 10:e0120603

    Article  Google Scholar 

  • Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and the ugly. Am J Physiol 271:C1424–C1437

    CAS  Google Scholar 

  • Bhattacharya AA, Grüne T, Curry S (2000a) Crystallographic analysis reveals common modes of binding of medium and long-chain fatty acids to human serum albumin. J Mol Biol 303:721–732

    Article  CAS  Google Scholar 

  • Bhattacharya AA, Curry S, Franks NP (2000b) Binding of the general anesthetics propofol and halothane to human serum albumin. High resolution crystal structures. J Biol Chem 275:38731–38738

    Article  CAS  Google Scholar 

  • Blindauer CA, Khazaipoul S, Yu R, Stewart AJ (2016) Fatty acid-mediated inhibition of metal binding to the multi-metal site on serum albumin: implications for cardiovascular disease. Curr Top Med Chem. doi:10.2174/1568026616666160216155927

    Google Scholar 

  • Carballal S, Bartesaghi S, Radi R (2014) Kinetic and mechanistic considerations to assess the biological fate of peroxynitrite. Biochim Biophys Acta 1840:768–780

    Article  CAS  Google Scholar 

  • Carter DC, Ho JX (1994) Structure of serum albumin. Adv Protein Chem 45:153–203

    Article  CAS  Google Scholar 

  • Chuang VT, Otagiri M (2002) How do fatty acids cause allosteric binding of drugs to human serum albumin? Pharm Res 19:1458–1464

    Article  CAS  Google Scholar 

  • Clementi E, Nisoli E (2005) Nitric oxide and mitochondrial biogenesis: a key to long-term regulation of cellular metabolism. Comp Biochem Physiol 142:102–110

    Article  Google Scholar 

  • Curry S (2009) Lessons from the crystallographic analysis of small molecule binding to human serum albumin. Drug Metab Pharmacokinet 24:342–357

    Article  CAS  Google Scholar 

  • Curry S, Mandelkow H, Brick P, Franks N (1998) Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nat Struct Biol 5:827–835

    Article  CAS  Google Scholar 

  • Denicola A, Radi R (2005) Peroxynitrite and drug-dependent toxicity. Toxicology 208:273–288

    Article  CAS  Google Scholar 

  • di Masi A, Gullotta F, Bolli A, Fanali G, Fasano M, Ascenzi P (2011) Ibuprofen binding to secondary sites allosterically modulates the spectroscopic and catalytic properties of human serum heme-albumin. FEBS J 278:654–662

    Article  Google Scholar 

  • di Masi A, Leboffe L, Trezza V, Fanali G, Coletta M, Fasano M, Ascenzi P (2015) Drugs modulate allosterically heme-Fe-recognition by human serum albumin and heme-Fe-mediated reactivity. Curr Pharm Des 21:1837–1847

    Article  Google Scholar 

  • di Masi A, Trezza V, Leboffe L, Ascenzi P (2016) Human plasma lipocalins and serum albumin: plasma alternative carriers? J Control Release 228:191–205

    Article  Google Scholar 

  • Di Muzio E, Polticelli F, Trezza V, Fanali G, Fasano M, Ascenzi P (2014) Imatinib binding to human serum albumin modulates heme association and reactivity. Arch Biochem Biophys 560:100–112

    Article  Google Scholar 

  • Di Muzio E, Polticelli F, di Masi A, Fanali G, Fasano M, Ascenzi P (2016) All-trans-retinoic acid and retinol binding to the FA1 site of human serum albumin competitively inhibits heme-Fe(III) association. Arch Biochem Biophys 590:56–63

    Article  Google Scholar 

  • Domenici E, Bertucci C, Salvadori P, Wainer IW (1991) Use of a human serum albumin-based high-performance liquid chromatography chiral stationary phase for the investigation of protein binding: detection of the allosteric interaction between warfarin and benzodiazepine binding sites. J Pharm Sci 80:164–166

    Article  CAS  Google Scholar 

  • Ducrocq C, Blanchard B, Pignatelli B, Oshima H (1999) Peroxynitrite: an endogenous oxidizing and nitrating agent. Cell Mol Life Sci 55:1068–1077

    Article  CAS  Google Scholar 

  • Duff MR Jr, Kumar CV (2009) The metallomics approach: use of Fe(II) and Cu(II) footprinting to examine metal binding sites on serum albumins. Metallomics 1:518–523

    Article  CAS  Google Scholar 

  • Fallahi A, Gaeini A, Shekarfroush S, Khoshbaten A (2015) Cardioprotective Effect of high intensity interval training and nitric oxide metabolites (NO2 , NO3 ). Iran J Public Health 44:1270–1276

    Google Scholar 

  • Fanali G, Pariani G, Ascenzi P, Fasano M (2009) Allosteric and binding properties of Asp1–Glu382 truncated recombinant human serum albumin—an optical and NMR spectroscopic investigation. FEBS J 276:2241–2250

    Article  CAS  Google Scholar 

  • Fanali G, Rampoldi V, di Masi A, Bolli A, Lopiano L, Ascenzi P, Fasano M (2010) Binding of anti-Parkinson’s disease drugs to human serum albumin is allosterically modulated. IUBMB Life 62:371–376

    CAS  Google Scholar 

  • Fanali G, di Masi A, Trezza V, Marino M, Fasano M, Ascenzi P (2012a) Human serum albumin: from bench to bedside. Mol Asp Med 33:209–290

    Article  CAS  Google Scholar 

  • Fanali G, Cao Y, Ascenzi P, Fasano M (2012b) Mn(II) binding to human serum albumin: a 1H-NMR relaxometric study. J Inorg Biochem 117:198–203

    Article  CAS  Google Scholar 

  • Fasano M, Curry S, Terreno E, Galliano M, Fanali G, Narciso P, Notari S, Ascenzi P (2005) The extraordinary ligand binding properties of human serum albumin. IUBMB Life 57:787–796

    Article  CAS  Google Scholar 

  • Fitos I, Simonyi M (1992) Stereoselective effect of phenprocoumon enantiomers on the binding of benzodiazepines to human serum albumin. Chirality 4:21–23

    Article  CAS  Google Scholar 

  • Flower DR (1993) Structural relationship of streptavidin to the calycin protein superfamily. FEBS Lett 333:99–102

    Article  CAS  Google Scholar 

  • Flower DR (1995) Multiple molecular recognition properties of the lipocalin protein family. J Mol Recognit 8:185–195

    Article  CAS  Google Scholar 

  • Flower DR (1996) The lipocalin protein family: structure and function. Biochem J 318:1–14

    Article  CAS  Google Scholar 

  • Flower DR, North AC, Sansom CE (2000) The lipocalin protein family: structural and sequence overview. Biochim Biophys Acta 1482:9–24

    Article  CAS  Google Scholar 

  • Ghuman J, Zunszain PA, Petitpas I, Bhattacharya AA, Otagiri M, Curry S (2005) Structural basis of the drug-binding specificity of human serum albumin. J Mol Biol 353:38–52

    Article  CAS  Google Scholar 

  • Goldstein S, Merényi G (2008) The chemistry of peroxynitrite: implications for biological activity. Methods Enzymol 436:49–61

    Article  CAS  Google Scholar 

  • Gundry RL, Fu Q, Jelinek CA, Van Eyk JE, Cotter RJ (2007) Investigation of an albumin-enriched fraction of human serum and its albuminome. Proteomics Clin Appl 1:73–88

    Article  CAS  Google Scholar 

  • Ignarro LJ (2002) Nitric oxide as a unique signaling molecule in the vascular system: a historical overview. J Physiol Pharmacol 53:503–514

    CAS  Google Scholar 

  • Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 84:9265–9269

    Article  CAS  Google Scholar 

  • Kaneko K, Chuang VT, Minomo A, Yamasaki K, Bhagavan NV, Maruyama T, Otagiri M (2011) Histidine146 of human serum albumin plays a prominent role at the interface of subdomains IA and IIA in allosteric ligand binding. IUBMB Life 63:277–285

    Article  CAS  Google Scholar 

  • Kumar S, Bandyopadhyay U (2005) Free heme toxicity and its detoxification systems in human. Toxicol Lett 157:175–188

    Article  CAS  Google Scholar 

  • Lejon S, Frick IM, Björck L, Wikström M, Svensson S (2004) Crystal structure and biological implications of a bacterial albumin binding module in complex with human serum albumin. J Biol Chem 279:42924–42928

    Article  CAS  Google Scholar 

  • Lundberg JO, Weitzberg E, Gladwin MT (2008) The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov 7:156–167

    Article  CAS  Google Scholar 

  • Meneghini C, Leboffe L, Bionducci M, Fanali G, Meli M, Colombo G, Fasano M, Ascenzi P, Mobilio S (2014) The five-to-six-coordination transition of ferric human serum heme-albumin is allosterically-modulated by ibuprofen and warfarin: a combined XAS and MD study. PLoS One 9:e104231

    Article  Google Scholar 

  • Meng EC, Pettersen EF, Couch GS, Huang CC, Ferrin TE (2006) Tools for integrated sequence-structure analysis with UCSF Chimera. BMC Bioinform 7:339

    Article  Google Scholar 

  • Miller YI, Shaklai N (1999) Kinetics of hemin distribution in plasma reveals its role in lipoprotein oxidation. Biochim Biophys Acta 1454:153–164

    Article  CAS  Google Scholar 

  • Moncada S, Higgs A (1993) The l-arginine-nitric oxide pathway. N Engl J Med 329:2002–2012

    Article  CAS  Google Scholar 

  • Muller-Eberhard U, Javid J, Liem HH, Hanstein A, Hanna M (1968) Plasma concentrations of hemopexin, haptoglobin and heme in patients with various hemolytic diseases. Blood 32:811–815

    CAS  Google Scholar 

  • Napoli C, Ignarro LJ (2009) Nitric oxide and pathogenic mechanisms involved in the development of vascular diseases. Arch Pharm Res 32:1103–1108

    Article  CAS  Google Scholar 

  • Nicoletti FP, Howes BD, Fittipaldi M, Fanali G, Fasano M, Ascenzi P, Smulevich G (2008) Ibuprofen induces an allosteric conformational transition in the heme complex of human serum albumin with significant effects on heme ligation. J Am Chem Soc 130:11677–11688

    Article  CAS  Google Scholar 

  • Omar SA, Webb AJ, Lundberg JO, Weitzberg E (2016) Therapeutic effects of inorganic nitrate and nitrite in cardiovascular and metabolic diseases. J Intern Med 279:315–336

    Article  CAS  Google Scholar 

  • Otagiri M (2005) A molecular functional study on the interactions of drugs with plasma proteins. Drug Metab Pharmacokinet 20:309–323

    Article  CAS  Google Scholar 

  • Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424

    Article  CAS  Google Scholar 

  • Palmer RM, Ashton DS, Moncada S (1988) Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333:664–666

    Article  CAS  Google Scholar 

  • Petitpas I, Bhattacharya AA, Twine S, East M, Curry S (2001) Crystal structure analysis of warfarin binding to human serum albumin: anatomy of drug site I. J Biol Chem 276:22804–22809

    Article  CAS  Google Scholar 

  • Petitpas I, Petersen CE, Ha CE, Bhattacharya AA, Zunszain PA, Ghuman J, Bhagavan NV, Curry S (2003) Structural basis of albumin–thyroxine interactions and familial dysalbuminemic hyperthyroxinemia. Proc Natl Acad Sci USA 100:6440–6445

    Article  CAS  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  Google Scholar 

  • Polticelli F, Caprari S, Gianni S, Ascenzi P (2012) GA/GB fold switching may modulate fatty acid transfer from human serum albumin to bacteria. IUBMB Life 64:885–888

    Article  Google Scholar 

  • Ryter SW, Tyrrell RM (2000) The heme synthesis and degradation pathways: role in oxidant sensitivity. Heme oxygenase has both pro- and antioxidant properties. Free Radic Biol Med 28:289–309

    Article  CAS  Google Scholar 

  • Skerra A (2000) Lipocalins as a scaffold. Biochim Biophys Acta 1482:337–350

    Article  CAS  Google Scholar 

  • Sudlow G, Birkett DJ, Wade DN (1975) The characterization of two specific drug binding sites on human serum albumin. Mol Pharmacol 11:824–832

    CAS  Google Scholar 

  • Sudlow G, Birkett DJ, Wade DN (1976) Further characterization of specific drug binding sites on human serum albumin. Mol Pharmacol 12:1052–1061

    CAS  Google Scholar 

  • Tolosano E, Fagoone S, Morello N, Vinchi F, Fiorito V (2010) Heme scavenging and the other facets of hemopexin. Antioxid Redox Signal 12:305–320

    Article  CAS  Google Scholar 

  • Wang ZM, Ho JX, Ruble JR, Rose J, Rüker F, Ellenburg M, Murphy R, Click J, Soistman E, Wilkerson L, Carter DC (2013) Structural studies of several clinically important oncology drugs in complex with human serum albumin. Biochim Biophys Acta 1830:5356–5374

    Article  CAS  Google Scholar 

  • Wardell M, Wang Z, Ho JX, Robert J, Ruker F, Ruble J, Carter DC (2002) The atomic structure of human methemalbumin at 1.9 Å. Biochem Biophys Res Commun 291:813–819

    Article  CAS  Google Scholar 

  • Weidinger A, Kozlov AV (2015) Biological activities of reactive oxygen and nitrogen species: oxidative stress versus signal transduction. Biomolecules 5:472–484

    Article  CAS  Google Scholar 

  • Yang F, Bian C, Zhu L, Zhao G, Huang Z, Huang M (2007) Effect of human serum albumin on drug metabolism: structural evidence of esterase activity of human serum albumin. J Struct Biol 157:348–355

    Article  CAS  Google Scholar 

  • Zsila F (2013a) Subdomain IB is the third major drug binding region of human serum albumin: toward the three-sites model. Mol Pharm 10:1668–1682

    Article  CAS  Google Scholar 

  • Zsila F (2013b) Circular dichroism spectroscopic detection of ligand binding induced subdomain IB specific structural adjustment of human serum albumin. J Phys Chem B 117:10798–10806

    Article  CAS  Google Scholar 

  • Zunszain PA, Ghuman J, Komatsu T, Tsuchida E, Curry S (2003) Crystal structural analysis of human serum albumin complexed with hemin and fatty acid. BMC Struct Biol 3:6

    Article  Google Scholar 

  • Zunszain PA, Ghuman J, McDonagh AF, Curry S (2008) Crystallographic analysis of human serum albumin complexed with 4Z,15E-bilirubin-IXα. J Mol Biol 381:394–406

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank colleagues as well as past and present members of their laboratories who contributed with data and discussions to the ideas presented here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Ascenzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ascenzi, P., di Masi, A., Leboffe, L. et al. The drug-dependent five- to six-coordination transition of the heme-Fe atom modulates allosterically human serum heme-albumin reactivity. Rend. Fis. Acc. Lincei 28 (Suppl 1), 207–215 (2017). https://doi.org/10.1007/s12210-016-0562-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-016-0562-2

Keywords

Navigation