Skip to main content
Log in

Two-dimensional molecular chirality transfer on metal surfaces

  • Chirality in Chemistry and Biophysics
  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

The chirality transfer control from a single molecule to the surface molecular superstructures and to the substrate is a challenging and important aspect of two-dimensional chiral nanostructures for tailoring the functionality of molecular––metal interfaces. However, how the chiral transfer takes place still remains an open question. In this paper, we combine data from scanning tunneling microscopy, low-energy electron diffraction and circular dichroism in the angular distribution of valence photoelectrons measurements to interpret the formation of extended chiral self-assembled domains obtained by adsorption of the chiral amino-alcohol alaninol on Cu(100). We find that the deposition of alaninol enantiomers results in the formation of isolated tetramers that are aligned along the directions of the substrate at low coverage, whereas a rotation of 14° with respect to the Cu(100) unit vectors is observed when small clusters of tetramers are formed. This suggests that the reorientation originates from forces acting when tetramers pack together in the self-assembling process. Direct information on the chirality transfer from molecules to the substrate has been obtained by the dichroic behavior of a mixed molecule-copper valence state showing that the presence of molecular chiral domains induces asymmetric interaction with the substrate and locally transfers chiral character to the underlying metal atoms participating in the adsorption process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allegretti F, Polcik M, Sayago DI, Demirors F, O’Brien S, Nisbet G, Lamont CLA, Woodruff DP (2005) Can circular dichroism in core-level photoemission provide a spectral fingerprint of adsorbed chiral molecules? New J Phys 7:19. doi:10.1088/1367-2630/7/1/109

    Article  Google Scholar 

  • Baiker A (2005) Reflections on chiral metal surfaces and their potential for catalysis. Catal Today 100(1–2):159–170

    Article  CAS  Google Scholar 

  • Barlow SM, Raval R (2003) Complex organic molecules at metal surfaces: bonding, organisation and chirality. Surf Sci Rep 50(6–8):201–341. doi:10.1016/s0167-5729(03)00015-3

    Article  CAS  Google Scholar 

  • Barth JV, Costantini G, Kern K (2005) Engineering atomic and molecular nanostructures at surfaces. Nature 437(7059):671–679

    Article  CAS  Google Scholar 

  • Black CT, Ruiz R, Breyta G, Cheng JY, Colburn ME, Guarini KW, Kim H-C, Zhang Y (2007) Polymer self assembly in semiconductor microelectronics. IBM J Res Dev 51(5):605–633

    Article  CAS  Google Scholar 

  • Blanco-Rey M, Jones G (2010) Asymmetric relief of surface stress induced by a chiral adsorbate: alaninate adsorption on Cu(110). Phys Rev B 81(20):205428

    Article  Google Scholar 

  • Bombis C, Weigelt S, Knudsen MM, Norgaard M, Busse C, Laegsgaard E, Besenbacher F, Gothelf KV, Linderoth TR (2010) Steering organizational and conformational surface chirality by controlling molecular chemical functionality. ACS Nano 4(1):297–311. doi:10.1021/nn9012803

    Article  CAS  Google Scholar 

  • Bonifazi D, Mohnani S, Llanes-Pallas A (2009) Supramolecular chemistry at interfaces: molecular recognition on nanopatterned porous surfaces. Chem Eur J 15(29):7004–7025

    Article  CAS  Google Scholar 

  • Catone D, Turchini S, Contini G, Zema N, Irrera S, Prosperi T, Stener M, Di Tommaso D, Decleva P (2007) 2-amino-1-propanol versus 1-amino-2-propanol: valence band and C 1 s core-level photoelectron spectra. J Chem Phys 127(14):10. doi:10.1063/1.2798113

    Article  Google Scholar 

  • Catone D, Stener M, Decleva P, Contini G, Zema N, Prosperi T, Feyer V, Prince KC, Turchini S (2012) Phys Rev Lett 108:083001

    Article  CAS  Google Scholar 

  • Ciesielski A, Lena S, Masiero S, Spada Gian P, Samorì P (2010) Dynamers at the solid–liquid interface: controlling the reversible assembly/reassembly process between two highly ordered supramolecular guanine motifs. Angew Chem Int Ed 49(11):1963–1966

    Article  CAS  Google Scholar 

  • Contini G, Zema N, Turchini S, Catone D, Prosperi T, Carravetta V, Bolognesi P, Avaldi L, Feyer V (2007) Vibrational state dependence of beta and D asymmetry parameters: the case of the highest occupied molecular orbital photoelectron spectrum of methyl-oxirane. J Chem Phys 127(12):7. doi:10.1063/1.2779324

    Article  Google Scholar 

  • Contini G, Gori P, Ronci F, Zema N, Colonna S, Aschi M, Palma A, Turchini S, Catone D, Cricenti A, Prosperi T (2011) Chirality transfer from a single chiral molecule to 2D superstructures in alaninol on the Cu(100) surface. Langmuir 27(12):7410–7418. doi:10.1021/la200110r

    Article  CAS  Google Scholar 

  • Contini G, Turchini S, Sanna S, Catone D, Fujii J, Vobornik I, Prosperi T, Zema N (2012) Transfer of chirality from adsorbed chiral molecules to the substrate highlighted by circular dichroism in angle-resolved valence photoelectron spectroscopy. Phys Rev B 86(3):035426

    Article  Google Scholar 

  • Di Tommaso D, Stener M, Fronzoni G, Decleva P (2006) Conformational effects on circular dichroism in the photoelectron angular distribution. Chem Phys Chem 7(4):924–934. doi:10.1002/cphc.200500602

    Article  Google Scholar 

  • Fasel R, Parschau M, Ernst K-H (2006) Amplification of chirality in two-dimensional enantiomorphous lattices. Nature 439(7075):449–452

    Article  CAS  Google Scholar 

  • Firth A, Aggeli A, Burke JL, Yang XB, Kirkham J (2006) Biomimetic self-assembling peptides as injectable scaffolds for hard tissue engineering. Nanomedicine 1(2):189–199. doi:10.2217/17435889.1.2.189

    Article  CAS  Google Scholar 

  • Forster M, Dyer MS, Persson M, Raval R (2011) Tailoring homochirality at surfaces: going beyond molecular handedness. J Am Chem Soc 133(40):15992–16000

    Article  CAS  Google Scholar 

  • Gellman AJ (2010) Chiral surfaces: accomplishments and challenges. ACS Nano 4(1):5–10. doi:10.1021/nn901885n

    Article  CAS  Google Scholar 

  • Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Corso AD, Sd Gironcoli, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Cond Mat 21(39):395502

    Article  Google Scholar 

  • Gori P, Contini G, Prosperi T, Catone D, Turchini S, Zema N, Palma A (2008) d-Alaninol adsorption on Cu(100): photoelectron spectroscopy and first-principles calculations. J Phys Chem B 112:3963–3970

    Article  CAS  Google Scholar 

  • Gori P, Contini G, Prosperi T, Ronci F, Colonna S, Zema N, Turchini S, Catone D, Cricenti A, Palma A (2009) Adsorption and self-assembly of d-alaninol on Cu(100). Superlattices Microstruct 46(1–2):52–58

    Article  CAS  Google Scholar 

  • Gori P, Contini G, Prosperi T, Ronci F, Colonna S, Zema N, Turchini S, Catone D, Cricenti A, Aschi M, Palma A (2010) Supramolecular organization of chiral molecules on metallic surfaces: d-alaninol on Cu(100) as a case study. Phys Stat Solid C 7:2616–2619

    Article  CAS  Google Scholar 

  • Gori P, Contini G, Ronci F, Colonna S, Zema N, Turchini S, Catone D, Cricenti A, Prosperi T, Aschi M, Palma A (2012) Self assembly and chirality transfer in d-alaninol on the Cu(100) surface. Eur Phys J D 66:136. doi:10.1140/epjd/e2012-30084-6

  • Haq S, Liu N, Humblot V, Jansen APJ, Raval R (2009) Drastic symmetry breaking in supramolecular organization of enantiomerically unbalanced monolayers at surfaces. Nat Chem 1(5):409–414

    Article  CAS  Google Scholar 

  • Humblot V, Barlow SM, Raval R (2004) Two-dimensional organisational chirality through supramolecular assembly of molecules at metal surfaces. Prog Surf Sci 76(1–2):1–19

    Article  CAS  Google Scholar 

  • Irrera S, Contini G, Zema N, Turchini S, Fujii J, Sanna S, Prosperi T (2007a) Two-dimensional chiral single domain by d-alaninol functionalization of Cu (100). J Phys Chem B 111(26):7478–7480

    Article  CAS  Google Scholar 

  • Irrera S, Contini G, Zema N, Turchini S, Sanna S, Moras P, Crotti C, Prosperi T (2007b) Adsorption of d-alaninol on Cu (100). Surf Sci 601(13):2562–2565

    Article  CAS  Google Scholar 

  • Jiang SP, Li L, Liu ZC, Pan M, Tang HL (2005) Self-assembly of PDDA-Pt nanoparticle/nafion membranes for direct methanol fuel cells. Electrochem Solid-State Lett 8(11):A574–A576. doi:10.1149/1.2041329

    Article  CAS  Google Scholar 

  • Kang M-S, Kang SH, Ma H, Kim K-S, Jen AKY (2006) Efficient photocurrent generation through a self-assembled monolayer of C60-mercaptophenylanthrylacetylene. J Power Sources 160(1):711–715

    Article  CAS  Google Scholar 

  • Kim JW, Carbone M, Dil JH, Tallarida M, Flammini R, Casaletto MP, Horn K, Piancastelli MN (2005) Atom-specific identification of adsorbed chiral molecules by photoemission. Phys Rev Lett 95(10):107601

    Article  CAS  Google Scholar 

  • Lai J, Ma Z, Mink L, Mueller LJ, Zaera F (2009) Influence of peripheral groups on the physical and chemical behavior of cinchona alkaloids. J Phys Chem B 113(34):11696–11701

    Article  CAS  Google Scholar 

  • Linares M, Minoia A, Brocorens P, Beljonne D, Lazzaroni R (2009) Expression of chirality in molecular layers at surfaces: insights from modelling. Chem Soc Rev 38(3):806–816. doi:10.1039/b801638k

    Article  CAS  Google Scholar 

  • Lingenfelder M, Tomba G, Costantini G, Ciacchi LC, De Vita A, Kern K (2007) Tracking the chiral recognition of adsorbed dipeptides at the single-molecule level. Angew Chem Int Ed 46(24):4492–4495. doi:10.1002/anie.200700194

    Article  CAS  Google Scholar 

  • Lipton-Duffin J, Miwa JA, Urquhart SG, Contini G, Cossaro A, Casalis L, Barth JV, Floreano L, Morgante A, Rosei F (2012) Binding geometry of hydrogen-bonded chain motif in self-assembled gratings and layers on Ag(111). Langmuir 28(40):14291–14300. doi:10.1021/la303010p

    Article  CAS  Google Scholar 

  • MacLeod JM, Ivasenko O, Fu C, Taerum T, Rosei F, Perepichka DF (2009) Supramolecular ordering in oligothiophene-fullerene monolayers. J Am Chem Soc 131(46):16844–16850

    Article  CAS  Google Scholar 

  • Mallat T, Orglmeister E, Baiker A (2007) Asymmetric catalysis at chiral metal surfaces. Chem Rev 107(11):4863–4890

    Article  CAS  Google Scholar 

  • Perepichka DF, Rosei F (2009) Extending polymer conjugation into the second dimension. Science 323(5911):216–217. doi:10.1126/science.1165429

    Article  CAS  Google Scholar 

  • Polcik M, Allegretti F, Sayago DI, Nisbet G, Lamont CLA, Woodruff DP (2004) Circular dichroism in core level photoemission from an adsorbed chiral molecule. Phys Rev Lett 92(23):236103

    Article  CAS  Google Scholar 

  • Raval R (2009) Chiral expression from molecular assemblies at metal surfaces: insights from surface science techniques. Chem Soc Rev 38(3):707–721. doi:10.1039/b800411k

    Article  CAS  Google Scholar 

  • Roth C, Parschau M, Ernst K-H (2011) Chiral reconstruction of a metal surface by adsorption of racemic malic acid. Chem Phys Chem 12(8):1572–1577

    Article  CAS  Google Scholar 

  • Schönhense G (1990) Circular dichroism and spin polarization in photoemission from adsorbates and non-magnetic solids. Phys Scr T31:255–275

    Article  Google Scholar 

  • Stranges S, Turchini S, Alagia M, Alberti G, Contini G, Decleva P, Fronzoni G, Stener M, Zema N, Prosperi T (2005) Valence photoionization dynamics in circular dichroism of chiral free molecules: the methyl-oxirane. J Chem Phys 122(24):244303

    Article  CAS  Google Scholar 

  • Tomba G, Lingenfelder M, Costantini G, Kern K, Klappenberger F, Barth JV, Ciacchi LC, De Vita A (2007) Structure and energetics of diphenylalanine self-assembling on Cu(110). J Phys Chem A 111(49):12740–12748. doi:10.1021/jp076205c

    Article  CAS  Google Scholar 

  • Turchini S, Catone D, Contini G, Zema N, Irrera S, Stener M, Tommaso DD, Decleva P, Prosperi T (2009) Conformational effects in photoelectron circular dichroism of alaninol. Chem Phys Chem 10(11):1839–1846

    Article  CAS  Google Scholar 

  • Zaera F (2008) Chiral modification of solid surfaces: a molecular view. J Phys Chem C 112(42):16196–16203

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to M. Brolatti for the help during the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Contini.

Additional information

This contribution is the written, peer-reviewed version of a paper presented at the conference “Molecules at the Mirror—Chirality in Chemistry and Biophysics”, held at Accademia Nazionale dei Lincei in Rome on October 29–30, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Contini, G., Gori, P., Ronci, F. et al. Two-dimensional molecular chirality transfer on metal surfaces. Rend. Fis. Acc. Lincei 24, 251–257 (2013). https://doi.org/10.1007/s12210-013-0231-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-013-0231-7

Keywords

Navigation