Skip to main content

Advertisement

Log in

Recent Advances in Electrochemical Oxidation to Construct C–O Bonds

  • Review
  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

C–O bonds are widely found in pharmaceuticals and natural products and have various pharmacological activities. Therefore, developing effective strategies for constructing compounds containing C–O bonds has become a research hotspot among chemists. Organic electrochemical synthesis is a green, mild, and efficient strategy that shows great potential in the synthesis of compounds containing C–O bonds. This review introduces the reactions of compounds containing C–O bonds recently constructed by electrochemical methods and expounds the corresponding reaction mechanism to provide a reference for applying such reactions in organic synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Scheme 36
Scheme 37
Scheme 38
Scheme 39
Scheme 40
Scheme 41
Scheme 42
Scheme 43
Scheme 44
Scheme 45
Scheme 46

Similar content being viewed by others

References

  1. Bernardes LSC, Kato MJ, Albuquerque S et al (2006) Synthesis and trypanocidal activity of 1,4-bis-(3,4, 5-trimethoxy-phenyl)-1,4-butanediol and 1,4-bis-(3,4-dimethoxyphenyl)-1,4-butanediol. Bioorg Med Chem 14(21):7075–7082

    Article  Google Scholar 

  2. Metternich JB, Gilmour R (2016) One photocatalyst, n activation modes strategy for cascade catalysis: emulating coumarin biosynthesis with (-)-riboflavin. J Am Chem Soc 138(3):1040–1045

    Article  Google Scholar 

  3. Zhong PF, Lin HM, Wang LW et al (2020) Electrochemically enabled synthesis of sulfide imidazopyridines via a radical cyclization cascade. Green Chem 22(19):6334–6339

    Article  Google Scholar 

  4. He MX, Mo ZY, Wang ZQ et al (2020) Electrochemical synthesis of 1-naphthols by intermolecular annulation of alkynes with 1,3-dicarbonyl compounds. Org Lett 22(2):724–728

    Article  Google Scholar 

  5. Wang ZQ, Hou C, Zhong YF et al (2019) Electrochemically enabled double C-H activation of amides: chemoselective synthesis of polycyclic isoquinolinones. Org Lett 21(24):9841–9845

    Article  Google Scholar 

  6. Meng XJ, Zhong PF, Wang YM et al (2020) Electrochemical difunctionalization of olefines: access to selenomethyl-substituted cyclic ethers or lactones. Adv Synth Catal 362(3):506–511

    Article  Google Scholar 

  7. Zhang YZ, Mo ZY, Wang HS et al (2019) Electrochemically enabled chemoselective sulfonylation and hydrazination of indoles. Green Chem 21(14):3807–3811

    Article  Google Scholar 

  8. Mo ZY, Swaroop TR, Tong W et al (2018) Electrochemical sulfonylation of thiols with sulfonyl hydrazides: a metal- and oxidant-free protocol for the synthesis of thiosulfonates. Green Chem 20(19):4428–4432

    Article  Google Scholar 

  9. Wang ZQ, Meng XJ, Li QY et al (2018) Electrochemical synthesis of 3, 5-disubstituted-1,2,4-thiadiazoles through NH4I-mediated dimerization of thioamides. Adv Synth Catal 360(21):4043–4048

    Article  Google Scholar 

  10. He MX, Zhong PF, Liu HF et al (2022) Electrochemically mediated three-component synthesis of isothioureas using thiols as sulfur source. Green Synth Catal. https://doi.org/10.1016/j.gresc.2022.03.002

    Article  Google Scholar 

  11. Wang XY, Zhong YF, Mo ZY et al (2021) Synthesis of seleno oxindoles via electrochemical cyclization of N-arylacrylamides with diorganyl diselenides. Adv Synth Catal 363(1):208–214

    Article  Google Scholar 

  12. Yang ZX, Yu Y, Lai LC et al (2021) Carbon dioxide cycle via electrocatalysis: electrochemical carboxylation of CO2 and decarboxylative functionalization of carboxylic acids. Green Synth Catal 2(1):19–26

    Article  Google Scholar 

  13. Wang XY, Wu SH, Zhong YJ et al (2022) Electrochemically mediated decarboxylative acylation of N-nitrosoanilines with α-oxocarboxylic acids. Chin Chem Lett. https://doi.org/10.1016/j.cclet.2022.05.051

    Article  Google Scholar 

  14. Li QY, Cheng SY, Tang HT et al (2019) Synthesis of rutaecarpine alkaloids via an electrochemical cross dehydrogenation coupling reaction. Green Chem 21(20):5517–5520

    Article  Google Scholar 

  15. Ashikari Y, Nokami T, Yoshida JI (2011) Integrated electrochemical-chemical oxidation mediated by alkoxysulfonium ions. J Am Chem Soc 133(31):11840–11843

    Article  Google Scholar 

  16. Meng L, Su JH, Zha ZG et al (2013) Direct electrosynthesis of ketones from benzylic methylenes by electrooxidative C–H activation. Chemistry 19(18):5542–5545

    Article  Google Scholar 

  17. Zhu Y, Jiang C, Li H et al (2022) Electrochemical aerobic oxygenation and nitrogenation of cyclic alkenes via C=C bond cleavage or oxygenation and azidation of open-chain alkenes. J Org Chem 87(16):11031–11041

    Article  Google Scholar 

  18. Pradhan PP, Bobbitt JM, Bailey WF (2009) Oxidative cleavage of benzylic and related ethers, using an oxoammonium salt. J Org Chem 74(24):9524–9527

    Article  Google Scholar 

  19. Li C, Zeng CC, Hu LM et al (2013) Electrochemically induced CH functionalization using bromide ion/2, 2,6,6-tetramethylpiperidinyl-N-oxyl dual redox catalysts in a two-phase electrolytic system. Electrochim Acta 114:560–566

    Article  Google Scholar 

  20. Kawamata Y, Yan M, Liu ZQ et al (2017) Scalable, electrochemical oxidation of unactivated C–H bonds. J Am Chem Soc 139(22):7448–7451

    Article  Google Scholar 

  21. Hou ZW, Xu HC (2020) Electrochemically enabled intramolecular aminooxygenation of alkynes via amidyl radical cyclization. Chin J Chem 38(4):394–398

    Article  Google Scholar 

  22. Wang LW, Feng YF, Lin HM et al (2021) Electrochemically enabled selenium catalytic synthesis of 2, 1-benzoxazoles from o-nitrophenylacetylenes. J Org Chem 86(22):16121–16127

    Article  Google Scholar 

  23. Zhao P, Yin YW (2004) Synthesis α-aminonitrile through anodic cyanation of N-benzylpiperidine. J Heterocycl Chem 41(2):157–160

    Article  Google Scholar 

  24. Sierecki E, Errasti G, Martens T et al (2010) Diastereoselective α-allylation of secondary amines. Tetrahedron 66(52):10002–10007

    Article  Google Scholar 

  25. Turcaud S, Martens T, Sierecki E et al (2005) Anodic oxidation of chiral sulfinylamines: a new route to highly diastereoselective α-alkylation of piperidine. Tetrahedron Lett 46(31):5131–5134

    Article  Google Scholar 

  26. Shi LL, Zheng LY, Ning SL et al (2022) Electrooxidative dearomatization of inactive biphenyls to cyclohexadienones. Org Lett 24(31):5782–5786

    Article  Google Scholar 

  27. Engle KM, Mei TS, Wang XS et al (2011) Bystanding F+ oxidants enable selective reductive elimination from high-valent metal centers in catalysis. Angew Chem Int Ed Engl 50(7):1478–1491

    Article  Google Scholar 

  28. Mei TS, Wang XS, Yu JQ (2009) Pd(II)-catalyzed amination of C-H bonds using single-electron or two-electron oxidants. J Am Chem Soc 131(31):10806–10807

    Article  Google Scholar 

  29. Dudkina YB, Mikhaylov DY, Gryaznova TV et al (2013) Electrochemical ortho functionalization of 2-phenylpyridine with perfluorocarboxylic acids catalyzed by palladium in higher oxidation states. Organometallics 32(17):4785–4792

    Article  Google Scholar 

  30. Yang QL, Li YQ, Ma C et al (2017) Palladium-catalyzed C(sp3)–H oxygenation via electrochemical oxidation. J Am Chem Soc 139(8):3293–3298

    Article  Google Scholar 

  31. Li YQ, Yang QL, Fang P et al (2017) Palladium-catalyzed C(sp2)–H acetoxylation via electrochemical oxidation. Org Lett 19(11):2905–2908

    Article  Google Scholar 

  32. Sauermann N, Meyer TH, Tian C et al (2017) Electrochemical cobalt-catalyzed C–H oxygenation at room temperature. J Am Chem Soc 139(51):18452–18455

    Article  Google Scholar 

  33. Iwasaki M, Kazao Y, Ishida T et al (2020) Synthesis of oxygen-containing heterocyclic compounds by iron-catalyzed alkylative cyclization of unsaturated carboxylic acids and alcohols. Org Lett 22(18):7343–7347

    Article  Google Scholar 

  34. Liu B, Moeller KD (2001) Anodic oxidation reactions: the total synthesis of (+)-nemorensic acid. Tetrahedron Lett 42(41):7163–7165

    Article  Google Scholar 

  35. Xu HC, Brandt JD, Moeller KD (2008) Anodic cyclization reactions and the synthesis of (−)-crobarbatic acid. Tetrahedron Lett 49(24):3868–3871

    Article  Google Scholar 

  36. Luo MJ, Lv GF, Li Y et al (2021) Metal-free amino-controlled electrochemical intramolecular C–O and C–N couplings by site-selective activation of aryl C–N and C–O bonds. Green Chem 23(5):2044–2048

    Article  Google Scholar 

  37. He MX, Yao Y, Ai CZ et al (2022) Electrochemically-mediated C–H functionalization of allenes and 1,3-dicarbonyl compounds to construct tetrasubstituted furans. Org Chem Front 9(3):781–787

    Article  Google Scholar 

  38. Kao CL, Chern JW (2002) A novel strategy for the synthesis of benzofuran skeleton neolignans: application to ailanthoidol, XH-14, and obovaten. J Org Chem 67(19):6772–6787

    Article  Google Scholar 

  39. Apers S, Vlietinck A, Pieters L (2003) Lignans and neolignans as lead compounds. Phytochem Rev 2(3):201–217

    Article  Google Scholar 

  40. Mori N, Furuta A, Watanabe H (2016) Electochemical asymmetric dimerization of cinnamic acid derivatives and application to the enantioselective syntheses of furofuran lignans. Tetrahedron 72(51):8393–8399

    Article  Google Scholar 

  41. Gieshoff T, Kehl A, Schollmeyer D et al (2017) Electrochemical synthesis of benzoxazoles from anilides—a new approach to employ amidyl radical intermediates. Chem Commun (Camb) 53(20):2974–2977

    Article  Google Scholar 

  42. Liang XG, Niu LB, Wang SC et al (2021) Electrochemical (3 + 2) cyclization between amides and olefins. Chem Catal 1(5):1055–1064

    Article  Google Scholar 

  43. Ou CH, Pan YM, Tang HT (2022) Electrochemically promoted N-heterocyclic carbene polymer-catalyzed cycloaddition of aldehyde with isocyanide acetate. Sci China Chem 65(10):1873–1878

    Article  Google Scholar 

  44. Xu F, Qian XY, Li YJ et al (2017) Synthesis of 4H–1,3-benzoxazines via metal- and oxidizing reagent-free aromatic C–H oxygenation. Org Lett 19(23):6332–6335

    Article  Google Scholar 

  45. Zhang L, Zhang ZX, Hong JT et al (2018) Oxidant-free C(sp2)–H functionalization/C–O bond formation: a Kolbe oxidative cyclization process. J Org Chem 83(6):3200–3207

    Article  MathSciNet  Google Scholar 

  46. Shao AL, Li N, Gao Y et al (2018) Electrochemical intramolecular C–H/O–H cross-coupling of 2-arylbenzoic acids. Chin J Chem 36(7):619–624

    Article  Google Scholar 

  47. Zhang S, Li LJ, Wang HQ et al (2018) Scalable electrochemical dehydrogenative lactonization of C(sp2/sp3)–H bonds. Org Lett 20(1):252–255

    Article  Google Scholar 

  48. Li Y, Ding YJ, Wang JY et al (2013) Pd-catalyzed C–H lactonization for expedient synthesis of biaryl lactones and total synthesis of cannabinol. Org Lett 15(11):2574–2577

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Open Project Program of Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University (2022-GKLEH-08).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Gao or Xian-Li Ma.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, L., Wei, WJ., Jiang, CN. et al. Recent Advances in Electrochemical Oxidation to Construct C–O Bonds. Trans. Tianjin Univ. 28, 482–505 (2022). https://doi.org/10.1007/s12209-022-00345-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-022-00345-8

Keywords

Navigation