Skip to main content

Advertisement

Log in

Development of Metal and Metal-Based Composites Anode Materials for Potassium-Ion Batteries

  • Review
  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

Potassium-ion batteries (KIBs) are considered the next powerful potential generation energy storage system because of substantial potassium resource availability and similar characteristics with lithium. Unfortunately, the actual application of KIBs is inferior to that of lithium-ion batteries (LIBs), in which the finite energy density, ordinary circular life, and underdeveloped fabrication technique dominate the key constraints. Various works have recently been directed to growing novel anode electrodes with superior electrochemical capability. Noticeably, metals/metal oxides materials (e.g., Sb, Sn, Zn, SnO2, and MoO2) have been widely investigated as KIBs anodes because of high theoretical capacity, suggesting outstanding promise for high-energy KIBs. In this review, the latest research of metals/metal oxides electrodes for potassium storage is summarized. The major strategies to control the electrochemical property of metals/metal oxides electrodes are discussed. Finally, the future investigation foreground for these anode electrodes has been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hussein AK (2015) Applications of nanotechnology in renewable energies: a comprehensive overview and understanding. Renew Sustain Energy Rev 42:460–476

    Google Scholar 

  2. Pursiheimo E, Holttinen H, Koljonen T (2019) Inter-sectoral effects of high renewable energy share in global energy system. Renew Energy 136:1119–1129

    Google Scholar 

  3. Chu S, Cui Y, Liu N (2017) The path towards sustainable energy. Nat Mater 16(1):16–22

    Google Scholar 

  4. Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Sci 334(6058):928–935

    Google Scholar 

  5. Zhang YX, Lian F, Lu JH et al (2020) Identification of reversible insertion-type lithium storage reaction of manganese oxide with long cycle lifespan. J Energy Chem 46:144–151

    Google Scholar 

  6. Liu H, Cheng X, Huang J et al (2019) Alloy anodes for rechargeable alkali-metal batteries: progress and challenge. ACS Mater Lett 1(2):217–229

    Google Scholar 

  7. Zhang XQ, Cheng XB, Zhang Q (2016) Nanostructured energy materials for electrochemical energy conversion and storage: a review. J Energy Chem 25(6):967–984

    Google Scholar 

  8. Vikström H, Davidsson S, Höök M (2013) Lithium availability and future production outlooks. Appl Energy 110:252–266

    Google Scholar 

  9. Väyrynen A, Salminen J (2012) Lithium ion battery production. J Chem Thermodyn 46:80–85

    Google Scholar 

  10. Chen TM, Jin Y, Lv H et al (2020) Applications of lithium-ion batteries in grid-scale energy storage systems. Trans Tianjin Univ 26(3):208–217

    Google Scholar 

  11. Fan XY, Liu B, Liu J et al (2020) Battery technologies for grid-level large-scale electrical energy storage. Trans Tianjin Univ 26(2):92–103

    Google Scholar 

  12. Liu YC, Wang J, Wu JW et al (2020) 3D cube-maze-like Li-rich layered cathodes assembled from 2D porous nanosheets for enhanced cycle stability and rate capability of lithium-ion batteries. Adv Energy Mater 10(5):1903139

    Google Scholar 

  13. Zhang XQ, Zhao CZ, Huang JQ et al (2018) Recent advances in energy chemical engineering of next-generation lithium batteries. Eng 4(6):831–847

    Google Scholar 

  14. Ong SP, Chevrier VL, Hautier G et al (2011) Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ Sci 4(9):3680–3688

    Google Scholar 

  15. Guo JZ, Gu ZY, Zhao XX et al (2019) Flexible Na/K-ion full batteries from the renewable cotton cloth–derived stable, low-cost, and binder-free anode and cathode. Adv Energy Mater 9(38):1902056

    Google Scholar 

  16. Pramudita JC, Sehrawat D, Goonetilleke D et al (2017) An initial review of the status of electrode materials for potassium-ion batteries. Adv Energy Mater 7(24):1602911

    Google Scholar 

  17. Zhao BS, Ding YC, Wen ZH (2019) From jackfruit rags to hierarchical porous N-doped carbon: a high-performance anode material for sodium-ion batteries. Trans Tianjin Univ 25(5):429–436

    Google Scholar 

  18. Li T, Zhang Q (2018) Advanced metal sulfide anode for potassium ion batteries. J Energy Chem 27(2):373–374

    MathSciNet  Google Scholar 

  19. Slater MD, Kim D, Lee E et al (2013) Sodium-ion batteries. Adv Funct Mater 23(8):947–958

    Google Scholar 

  20. Wang J, Fan L, Liu ZM et al (2019) In situ alloying strategy for exceptional potassium ion batteries. ACS Nano 13(3):3703–3713

    Google Scholar 

  21. Vaalma C, Buchholz D, Passerini S (2018) Non-aqueous potassium-ion batteries: a review. Curr Opin Electrochem 9:41–48

    Google Scholar 

  22. Yang C, Feng JR, Zhang YL et al (2019) Multidimensional integrated chalcogenides nanoarchitecture achieves highly stable and ultrafast potassium-ion storage. Small 15(44):1903720

    Google Scholar 

  23. Huang KS, Xing Z, Wang LC et al (2018) Direct synthesis of 3D hierarchically porous carbon/Sn composites via in situ generated NaCl crystals as templates for potassium-ion batteries anode. J Mater Chem A 6(2):434–442

    Google Scholar 

  24. Wang MT, Lu WJ, Zhang HM et al (2020) Organic electrode materials for non-aqueous K-ion batteries. Trans Tianjin Univ. https://doi.org/10.1007/s12209-020-00274-4

    Article  Google Scholar 

  25. Jian ZL, Hwang S, Li ZF et al (2017) Hard-soft composite carbon as a long-cycling and high-rate anode for potassium-ion batteries. Adv Funct Mater 27(26):1700324

    Google Scholar 

  26. Loaiza LC, Monconduit L, Seznec V (2020) Si and Ge-based anode materials for Li-, Na-, and K-ion batteries: a perspective from structure to electrochemical mechanism. Small 16(5):1905260

    Google Scholar 

  27. Okoshi M, Yamada Y, Komaba S et al (2017) Theoretical analysis of interactions between potassium ions and organic electrolyte solvents: a comparison with lithium, sodium, and magnesium ions. J Electrochem Soc 164(2):A54–A60

    Google Scholar 

  28. Kubota K, Dahbi M, Hosaka T et al (2018) Towards K-ion and Na-ion batteries as “beyond Li-ion.” Chem Rec 18(4):459–479

    Google Scholar 

  29. Zhang WC, Pang WK, Sencadas V et al (2018) Understanding high-energy-density Sn4P3 anodes for potassium-ion batteries. Joule 2(8):1534–1547

    Google Scholar 

  30. Hu X, Liu Y, Chen J et al (2019) Fast redox kinetics in Bi-heteroatom doped 3D porous carbon nanosheets for high-performance hybrid potassium-ion battery capacitors. Adv Energy Mater 9(42):1901533

    Google Scholar 

  31. Xing LD, Yu QY, Bao YP et al (2019) Strong (001) facet-induced growth of multi-hierarchical tremella-like Sn-doped V2O5 for high-performance potassium-ion batteries. J Mater Chem A 7(45):25993–26001

    Google Scholar 

  32. Xue LG, Li YT, Gao HC et al (2017) Low-cost high-energy potassium cathode. J Am Chem Soc 139(6):2164–2167

    Google Scholar 

  33. Chong SK, Chen YZ, Zheng Y et al (2017) Potassium ferrous ferricyanide nanoparticles as a high capacity and ultralong life cathode material for nonaqueous potassium-ion batteries. J Mater Chem A 5(43):22465–22471

    Google Scholar 

  34. Hosaka T, Kubota K, Hameed AS et al (2020) Research development on K-ion batteries. Chem Rev 120(14):6358–6466

    Google Scholar 

  35. Sultana I, Rahman MM, Mateti S et al (2020) Approaching reactive KFePO4 phase for potassium storage by adopting an advanced design strategy. Batter Supercaps 3(5):450–455

    Google Scholar 

  36. Deng T, Fan XL, Luo C et al (2018) Self-templated formation of P2-type K0.6CoO2 microspheres for high reversible potassium-ion batteries. Nano Lett 18(2):1522–1529

    Google Scholar 

  37. Kim H, Seo DH, Kim JC et al (2017) Investigation of potassium storage in layered P3-type K0.5MnO2 cathode. Adv Mater 29(37):1702480

    Google Scholar 

  38. Chen YN, Luo W, Carter M et al (2015) Organic electrode for non-aqueous potassium-ion batteries. Nano Energy 18:205–211

    Google Scholar 

  39. Ma J, Zhou E, Fan C et al (2018) Endowing CuTCNQ with a new role: a high-capacity cathode for K-ion batteries. Chem Commun 54(44):5578–5581

    Google Scholar 

  40. Rajagopalan R, Tang YG, Ji XB et al (2020) Advancements and challenges in potassium ion batteries: a comprehensive review. Adv Funct Mater 30(12):1909486

    Google Scholar 

  41. Wu X, Chen YL, Xing Z et al (2019) Advanced carbon-based anodes for potassium-ion batteries. Adv Energy Mater 9(21):1900343

    Google Scholar 

  42. Sultana I, Rahman MM, Chen Y et al (2018) Potassium-ion battery anode materials operating through the alloying-dealloying reaction mechanism. Adv Funct Mater 28(5):1703857

    Google Scholar 

  43. Sultana I, Rahman MM, Mateti S et al (2017) K-ion and Na-ion storage performances of Co3O4–Fe2O3 nanoparticle-decorated super P carbon black prepared by a ball milling process. Nanoscale 9(10):3646–3654

    Google Scholar 

  44. An YL, Tian Y, Ci LJ et al (2018) Micron-sized nanoporous antimony with tunable porosity for high-performance potassium-ion batteries. ACS Nano 12(12):12932–12940

    Google Scholar 

  45. Ge XF, Liu SH, Qiao M et al (2019) Enabling superior electrochemical properties for highly efficient potassium storage by impregnating ultrafine Sb nanocrystals within nanochannel-containing carbon nanofibers. Angew Chem Int Ed 58(41):14578–14583

    Google Scholar 

  46. Sultana I, Ramireddy T, Rahman MM et al (2016) Tin-based composite anodes for potassium-ion batteries. Chem Commun 52(59):9279–9282

    Google Scholar 

  47. Ramireddy T, Kali R, Jangid MK et al (2017) Insights into electrochemical behavior, phase evolution and stability of Sn upon K-alloying/de-alloying via in situ studies. J Electrochem Soc 164(12):A2360–A2367

    Google Scholar 

  48. Yang H, Xu R, Yao Y et al (2019) Multicore–shell Bi@N-doped carbon nanospheres for high power density and long cycle life sodium-and potassium-ion anodes. Adv Funct Mater 29(13):1809195

    Google Scholar 

  49. Lei KX, Wang CC, Liu LJ et al (2018) A porous network of bismuth used as the anode material for high-energy-density potassium-ion batteries. Angew Chem Int Ed 57(17):4687–4691

    Google Scholar 

  50. Jiang HY, An YL, Tian Y et al (2020) Scalable and controlled synthesis of 2D nanoporous Co3O4 from bulk alloy for potassium ion batteries. Mater Technol 35(9–10):594–599

    Google Scholar 

  51. McCulloch WD, Ren XD, Yu MZ et al (2015) Potassium-ion oxygen battery based on a high capacity antimony anode. ACS Appl Mater Interfaces 7(47):26158–26166

    Google Scholar 

  52. Sangster J, Pelton AD (1993) The K–Sb (potassium-antimony) system. J Phase Equilibria 14(4):510–514

    Google Scholar 

  53. Liu Q, Fan L, Ma RF et al (2018) Super long-life potassium-ion batteries based on an antimony@carbon composite anode. Chem Commun 54(83):11773–11776

    Google Scholar 

  54. Yi Z, Lin N, Zhang WQ et al (2018) Preparation of Sb nanoparticles in molten salt and their potassium storage performance and mechanism. Nanoscale 10(27):13236–13241

    Google Scholar 

  55. Han CH, Han K, Wang XP et al (2018) Three-dimensional carbon network confined antimony nanoparticle anodes for high-capacity K-ion batteries. Nanoscale 10(15):6820–6826

    Google Scholar 

  56. Gabaudan V, Touja J, Cot D et al (2019) Double-walled carbon nanotubes, a performing additive to enhance capacity retention of antimony anode in potassium-ion batteries. Electrochem Commun 105:106493

    Google Scholar 

  57. Han Y, Li T, Li Y et al (2019) Stabilizing antimony nanocrystals within ultrathin carbon nanosheets for high-performance K-ion storage. Energy Storage Mater 20:46–54

    Google Scholar 

  58. Zhang WM, Miao WF, Liu XY et al (2018) High-rate and ultralong-stable potassium-ion batteries based on antimony-nanoparticles encapsulated in nitrogen and phosphorus co-doped mesoporous carbon nanofibers as an anode material. J Alloy Compd 769:141–148

    Google Scholar 

  59. Cao KZ, Liu HQ, Jia YH et al (2020) Flexible antimony@carbon integrated anode for high-performance potassium-ion battery. Adv Mater Technol 5(6):2000199

    Google Scholar 

  60. Liu DY, Yang L, Chen ZY et al (2020) Ultra-stable Sb confined into N-doped carbon fibers anodes for high-performance potassium-ion batteries. Sci Bull 65(12):1003–1012

    Google Scholar 

  61. Madec L, Gabaudan V, Gachot G et al (2018) Paving the way for K-ion batteries: role of electrolyte reactivity through the example of Sb-based electrodes. ACS Appl Mater Interfaces 10(40):34116–34122

    Google Scholar 

  62. Zheng J, Yang Y, Fan XL et al (2019) Extremely stable antimony–carbon composite anodes for potassium-ion batteries. Energy Environ Sci 12(2):615–623

    Google Scholar 

  63. Huang B, Pan ZF, Su XY et al (2018) Tin-based materials as versatile anodes for alkali (earth)-ion batteries. J Power Sources 395:41–59

    Google Scholar 

  64. Nita C, Fullenwarth J, Monconduit L et al (2018) Understanding the Sn loading impact on the performance of mesoporous carbon/Sn-based nanocomposites in Li-ion batteries. ChemElectroChem 5(21):3249–3257

    Google Scholar 

  65. Bommier C, Ji XL (2015) Recent development on anodes for Na-ion batteries. Isr J Chem 55(5):486–507

    Google Scholar 

  66. Wang Q, Zhao X, Ni C et al (2017) Reaction and capacity-fading mechanisms of tin nanoparticles in potassium-ion batteries. J Phys Chem C 121(23):12652–12657

    Google Scholar 

  67. Qin J, He CN, Zhao NQ et al (2014) Graphene networks anchored with Sn@graphene as lithium ion battery anode. ACS Nano 8(2):1728–1738

    Google Scholar 

  68. Liao CB, Xu QK, Wu C et al (2016) Core–shell nano-structured carbon composites based on tannic acid for lithium-ion batteries. J Mater Chem A 4(43):17215–17224

    Google Scholar 

  69. Wang H, Xing Z, Hu ZK et al (2019) Sn-based submicron-particles encapsulated in porous reduced graphene oxide network: advanced anodes for high-rate and long life potassium-ion batteries. Appl Mater Today 15:58–66

    Google Scholar 

  70. Yang YL, Li D, Zhang JQ et al (2019) Sn nanoparticles anchored on N doped porous carbon as an anode for potassium ion batteries. Mater Lett 256:126613

    Google Scholar 

  71. Wang ZY, Dong KZ, Wang D et al (2019) A nanosized SnSb alloy confined in N-doped 3D porous carbon coupled with ether-based electrolytes toward high-performance potassium-ion batteries. J Mater Chem A 7(23):14309–14318

    Google Scholar 

  72. Gabaudan V, Berthelot R, Sougrati MT et al (2019) SnSb versus Sn: improving the performance of Sn-based anodes for K-ion batteries by synergetic alloying with Sb. J Mater Chem A 7(25):15262–15270

    Google Scholar 

  73. Wang CC, Wang LB, Li FJ et al (2017) Bulk bismuth as a high-capacity and ultralong cycle-life anode for sodium-ion batteries by coupling with glyme-based electrolytes. Adv Mater 29(35):1702212

    Google Scholar 

  74. Ni JF, Bi XX, Jiang Y et al (2017) Bismuth chalcogenide compounds Bi2×3 (X=O, S, Se): applications in electrochemical energy storage. Nano Energy 34:356–366

    Google Scholar 

  75. Zhang Q, Mao JF, Pang WK et al (2018) Boosting the potassium storage performance of alloy-based anode materials via electrolyte salt chemistry. Adv Energy Mater 8(15):1703288

    Google Scholar 

  76. Huang JQ, Lin XY, Tan H et al (2018) Bismuth microparticles as advanced anodes for potassium-ion battery. Adv Energy Mater 8(19):1703496

    Google Scholar 

  77. Zhao YX, Ren XC, Xing ZJ et al (2020) In situ formation of hierarchical bismuth nanodots/graphene nanoarchitectures for ultrahigh-rate and durable potassium-ion storage. Small 16(2):1905789

    Google Scholar 

  78. Li H, Zhao CX, Yin YM et al (2020) N-Doped carbon coated bismuth nanorods with a hollow structure as an anode for superior-performance potassium-ion batteries. Nanoscale 12(7):4309–4313

    Google Scholar 

  79. Xiang XY, Liu D, Zhu XX et al (2020) Evaporation-induced formation of hollow bismuth@N-doped carbon nanorods for enhanced electrochemical potassium storage. Appl Surf Sci 514:145947

    Google Scholar 

  80. Zhang RD, Bao JZ, Wang YH et al (2018) Concentrated electrolytes stabilize bismuth–potassium batteries. Chem Sci 9(29):6193–6198

    Google Scholar 

  81. Li XN, Liang JW, Hou ZG et al (2015) A synchronous approach for facile production of Ge–carbon hybrid nanoparticles for high-performance lithium batteries. Chem Commun 51(18):3882–3885

    Google Scholar 

  82. Yang Q, Wang ZF, Xi W et al (2019) Tailoring nanoporous structures of Ge anodes for stable potassium-ion batteries. Electrochem Commun 101:68–72

    Google Scholar 

  83. Yan CL, Gu X, Zhang L et al (2018) Highly dispersed Zn nanoparticles confined in a nanoporous carbon network: promising anode materials for sodium and potassium ion batteries. J Mater Chem A 6(36):17371–17377

    Google Scholar 

  84. Fan LL, Li XF, Yan B et al (2016) Amorphous SnO2/graphene aerogel nanocomposites harvesting superior anode performance for lithium energy storage. Appl Energy 175:529–535

    Google Scholar 

  85. Fan LL, Li XF, Yan B et al (2016) Controlled SnO2 crystallinity effectively dominating sodium storage performance. Adv Energy Mater 6(10):1502057

    Google Scholar 

  86. Shimizu M, Yatsuzuka R, Koya T et al (2018) Tin oxides as a negative electrode material for potassium-ion batteries. ACS Appl Energy Mater 1(12):6865–6870

    Google Scholar 

  87. Suo GQ, Li D, Feng L et al (2019) SnO2 nanosheets grown on stainless steel mesh as a binder free anode for potassium ion batteries. J Electroanal Chem 833:113–118

    Google Scholar 

  88. Qiu HL, Zhao LN, Asif M et al (2020) SnO2 nanoparticles anchored on carbon foam as a freestanding anode for high performance potassium-ion batteries. Energy Environ Sci 13(2):571–578

    Google Scholar 

  89. Huang Z, Chen Z, Ding SS et al (2018) Enhanced conductivity and properties of SnO2-graphene-carbon nanofibers for potassium-ion batteries by graphene modification. Mater Lett 219:19–22

    Google Scholar 

  90. Ma WS, Wang JW, Gao H et al (2018) A mesoporous antimony-based nanocomposite for advanced sodium ion batteries. Energy Storage Mater 13:247–256

    Google Scholar 

  91. Wang ZY, Dong KZ, Wang D et al (2019) Ultrafine SnO2 nanoparticles encapsulated in 3D porous carbon as a high-performance anode material for potassium-ion batteries. J Power Sources 441:227191

    Google Scholar 

  92. Chen Z, Yin DG, Zhang M (2018) Sandwich-like MoS2@SnO2@C with high capacity and stability for sodium/potassium ion batteries. Small 14(17):1703818

    Google Scholar 

  93. Suo GQ, Li D, Feng L et al (2020) Construction of SnS2/SnO2 heterostructures with enhanced potassium storage performance. J Mater Sci Technol 55:167–172

    Google Scholar 

  94. Shi YF, Guo BK, Corr SA et al (2009) Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity. Nano Lett 9(12):4215–4220

    Google Scholar 

  95. Zhou YG, Geng C (2017) A MoO2 sheet as a promising electrode material: ultrafast Li-diffusion and astonishing Li-storage capacity. Nanotechnol 28(10):105402

    Google Scholar 

  96. Rao YC, Yu S, Gu X et al (2019) Prediction of MoO2 as high capacity electrode material for (Na, K, Ca)-ion batteries. Appl Surf Sci 479:64–69

    Google Scholar 

  97. Liu CL, Luo SH, Huang HB et al (2019) Direct growth of MoO2/reduced graphene oxide hollow sphere composites as advanced anode materials for potassium-ion batteries. Chemsuschem 12(4):873–880

    Google Scholar 

  98. Bao S, Luo SH, Yan SX et al (2019) Nano-sized MoO2 spheres interspersed three-dimensional porous carbon composite as advanced anode for reversible sodium/potassium ion storage. Electrochim Acta 307:293–301

    Google Scholar 

  99. Jiang QQ, Hu S, Wang L et al (2020) Boosting potassium storage in nanosheet assembled MoSe2 hollow sphere through surface decoration of MoO2 nanoparticles. Appl Surf Sci 505:144573

    Google Scholar 

  100. Liu YT, Xiao YY, Liu FS et al (2019) Controlled building of mesoporous MoS2@MoO2-doped magnetic carbon sheets for superior potassium ion storage. J Mater Chem A 7(47):26818–26828

    Google Scholar 

  101. Cheong JY, Chang JH, Cho SH et al (2019) High-rate formation cycle of Co3O4 nanoparticle for superior electrochemical performance in lithium-ion batteries. Electrochim Acta 295:7–13

    Google Scholar 

  102. Adekoya D, Chen H, Hoh HY et al (2020) Hierarchical Co3O4@N-doped carbon composite as an advanced anode material for ultrastable potassium storage. ACS Nano 14(4):5027–5035

    Google Scholar 

  103. Qin GH, Liu YT, Han PY et al (2020) Dispersed MoS2 nanosheets in core shell Co3O4@C nanocubes for superior potassium ion storage. Appl Surf Sci 514:145946

    Google Scholar 

  104. Wu SH, Fu GL, Lv W et al (2018) A single-step hydrothermal route to 3D hierarchical Cu2O/CuO/rGO nanosheets as high-performance anode of lithium-ion batteries. Small 14(5):1702667

    Google Scholar 

  105. Wang XJ, Liu YC, Wang YJ et al (2016) CuO quantum dots embedded in carbon nanofibers as binder-free anode for sodium ion batteries with enhanced properties. Small 12(35):4865–4872

    Google Scholar 

  106. Cao KZ, Liu HQ, Li WY et al (2019) CuO nanoplates for high-performance potassium-ion batteries. Small 15(36):1901775

    Google Scholar 

  107. Li JL, Zhuang N, Xie JP et al (2020) K-ion storage enhancement in Sb2O3/reduced graphene oxide using ether-based electrolyte. Adv Energy Mater 10(5):1903455

    Google Scholar 

  108. Jin T, Li HX, Li Y et al (2018) Intercalation pseudocapacitance in flexible and self-standing V2O3 porous nanofibers for high-rate and ultra-stable K ion storage. Nano Energy 50:462–467

    Google Scholar 

  109. Wei L, Karahan HE, Zhai SL et al (2017) Amorphous bimetallic oxide-graphene hybrids as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. Adv Mater 29(38):1701410

    Google Scholar 

  110. Wang J, Wang B, Liu ZM et al (2019) Nature of bimetallic oxide Sb2MoO6/rGO anode for high-performance potassium-ion batteries. Adv Sci 6(17):1900904

    Google Scholar 

  111. Liu XL, Cao YC, Zheng H et al (2017) Synthesis and electrochemical performances of FeVO4·xH2O and FeVO4·xH2O/graphene as novel anode materials. Mater Lett 187:15–19

    Google Scholar 

  112. Hao Sim D, Rui XH, Chen J et al (2012) Direct growth of FeVO4 nanosheet arrays on stainless steel foil as high-performance binder-free Li ion battery anode. RSC Adv 2(9):3630–3633

    Google Scholar 

  113. Niu XG, Zhang YC, Tan LL et al (2019) Amorphous FeVO4 as a promising anode material for potassium-ion batteries. Energy Storage Mater 22:160–167

    Google Scholar 

  114. Yang C, Lv F, Zhang YL et al (2019) Confined Fe2VO4 subset of nitrogen-doped carbon nanowires with internal void space for high-rate and ultrastable potassium-ion storage. Adv Energy Mater 9(46):1902674

    Google Scholar 

  115. Yao YG, Huang ZN, Xie PF et al (2018) Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Sci 359(6383):1489–1494

    Google Scholar 

  116. Liu C, Zhou W, Zhang JF et al (2020) Air-assisted transient synthesis of metastable nickel oxide boosting alkaline fuel oxidation reaction. Adv Energy Mater 10(46):2001397

    Google Scholar 

  117. Wu H, Lu Q, Zhang JF et al (2020) Thermal shock-activated spontaneous growing of nanosheets for overall water splitting. Nano-Micro Lett 12:162

    Google Scholar 

  118. Chen YN, Li YJ, Wang YB et al (2016) Rapid, in situ synthesis of high capacity battery anodes through high temperature radiation-based thermal shock. Nano Lett 16(9):5553–5558

    Google Scholar 

  119. Chen YN, Xu SM, Zhu SZ et al (2019) Millisecond synthesis of CoS nanoparticles for highly efficient overall water splitting. Nano Res 12(9):2259–2267

    Google Scholar 

  120. Chen YN, Wang YL, Zhu SZ et al (2019) Nanomanufacturing of graphene nanosheets through nano-hole opening and closing. Mater Today 24:26–32

    Google Scholar 

  121. Dou SM, Xu J, Cui XY et al (2020) High-temperature shock enabled nanomanufacturing for energy-related applications. Adv Energy Mater 10(33):2001331

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 91963113).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanan Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Dou, S., Wang, Y. et al. Development of Metal and Metal-Based Composites Anode Materials for Potassium-Ion Batteries. Trans. Tianjin Univ. 27, 248–268 (2021). https://doi.org/10.1007/s12209-021-00281-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-021-00281-z

Keywords

Navigation