Skip to main content
Log in

Mechanical characterization of materials at small length scales

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

A review on the mechanical characterization of materials at small length scale is presented. The focus is on the different micro- and nanoscale testing techniques, the variety of materials investigated by the scientific and industrial communities and the mechanical quantities identified by such methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. R. Hsu, MEMS and microsystems-design, manufacture, and nanoscale engineering, John Wiley & Sons Inc., Hoboken, New Jersey, USA (2008).

    Google Scholar 

  2. J. W. Gardner, V. K. Varadan and O. O. Awadelkarim, Microsystems, MEMS and smart devices, John Wiley & Sons Inc., Chichester, UK (2001).

    Google Scholar 

  3. V. Labhasetwar and D. L. Leslie-Pelecky, Biomedical applications of nanotechnology, John Wiley & Sons Inc., Hoboken, New Jersey, USA (2007).

    Book  Google Scholar 

  4. R. Osiander, M. A. G. Darrin and J. L. Champion, MEMS and microstructures in aerospace applications, CRC Press, Boca Raton, FL, USA (2006).

    Google Scholar 

  5. R. L. Eisner, Tensile tests on silicon whiskers, Acta Metall, 3 (1955) 414–415.

    Article  Google Scholar 

  6. J. W. Beams, W. E. Walker and M. S. Marton Jr., Mechanical properties of thin films of silver, Phys. Rev., 87 (1952) 524–525.

    Article  Google Scholar 

  7. M. F. Doerner, D. S. Gardner and W. D. Nix, Plastic properties of thin films on substrates as measured by submicron indentation hardness and substrate curvature techniques, J. Mater. Res., 1(6) (1986) 845–851.

    Article  Google Scholar 

  8. C. A. Neugebauer, Tensile properties of thin, evaporated gold films, J. Appl. Phys., 31 (1960) 1096–1101.

    Article  Google Scholar 

  9. W. N. Sharpe Jr, Mechanical property measurement at the micro/nano-scale, Strain, 44 (2008) 20–26.

    Article  Google Scholar 

  10. T. Yi and C. Kim Measurement of mechanical properties for MEMS materials, Meas. Sci. and Technol., 10 (1999) 706–716.

    Article  Google Scholar 

  11. M. A. Haque and M. T. A. Saif, A review of MEMSbased microscale and nanoscale tensile and bending testing. Exp. Mech., 43 (2003) 248–255.

    Article  Google Scholar 

  12. K. J. Hemker and W. N. Sharpe Jr, Mechanical testing of very small samples, Annu. Rev. of Mater. Res., 37 (2007) 93–126.

    Article  Google Scholar 

  13. V. T. Srikar and S. M. Spearing, A critical review of microscale mechanical testing methods used in the design of microelectromechanical systems, Exp. Mech., 43 (2003) 238–247.

    Article  Google Scholar 

  14. R. Agrawal and H. D. Espinosa multiscale experiments: State of the art and remaining challenges, J. of Eng. Mater. and Technol., 131 (2009) 041208–1/15.

    Article  Google Scholar 

  15. M. Alfano, L. Pagnotta and M. F. Pantano, A review of patented works on the mechanical characterization of materials at micro- nano-scale, Recent Patents on Nanotech., 5(1) (2011) 37–45.

    Article  Google Scholar 

  16. K. Wouters and R. Puers, Determining the Young’s modulus and creep effects in three different photo definable epoxies for MEMS applications, Sens. and Actuators A, in press (2009).

  17. G. P. Zhang, C. A. Volkert, R. Schwaiger and P. Wellner et al, Length-scale-controlled fatigue mechanisms in thin copper films, Acta Mater., 54(11) (2006) 3127–3139.

    Article  Google Scholar 

  18. W. N. Sharpe Jr., B. Yuan and R. L. Edwards, A new technique for measuring the mechanical properties of thin films, J. of Microelectromech. Syst., 6(3) (1997) 193–199.

    Article  Google Scholar 

  19. E. Mazza, S. Abel and J. Dual, Experimental determination of mechanical properties of Ni and Ni-Fe microbars, Microsyst. Technol., 2 (1996) 197–202.

    Article  Google Scholar 

  20. P. B. Kaul, U. Singh and V. Prakash, In situ characterization of nanomechanical behavior of free-standing nanostructures, Exp. Mech., 49 (2009) 191–205.

    Article  Google Scholar 

  21. M. A. Haque and M. T. A. Saif, In situ tensile testing of nanoscale freestanding thin films inside transmission electron microscope, Mater. Res. Soc., 20(7) (2009) 1769–1777.

    Google Scholar 

  22. S. Cuenot, S. Dermoustier-Champagne and B. Nysten, Elastic modulus of polypyrrole nanotubes, Phys. Rev. Lett., 858 (2000) 1690–1693.

    Article  Google Scholar 

  23. T. Tsuchiya, O. Tabata, J. Sakata and Y. Taga, Specimen size effect on tensile strength of surface-micromachined polycrystalline silicon thin films, J. of Microelectromech. Syst., 7(1) (1998) 1057–7157(98)01301-8.

    Google Scholar 

  24. E. P. S. Tan, C. N. Goh, C. H. Sow and C. T. Lim, Tensile test of a single nanofiber using an atomic force microscope tip, App. Phys. Lett., 86(7) (2005) 073115.

    Article  Google Scholar 

  25. E. P. S. Tan and C. T. Lim, Physical properties of single polymeric nanofiber, App. Phys. Lett., 849 (2004) 1603–1605.

    Article  Google Scholar 

  26. S. Greek and S. Johansson, Tensile testing of thin film microstructures, Proc. SPIE 3224 (1997) 344–351.

    Article  Google Scholar 

  27. M. A. Haque and M. T. A. Saif, Application of MEMS force sensors for in situ mechanical characterization of nanoscale thin films in SEM and TEM, Sens. And Actuators A, 97–98 (2002) 239–245.

    Article  Google Scholar 

  28. M. A. Haque and M. T. A. Saif, Deformation mechanisms in free-standing nanoscale thin films: A quantitative in situ transmission electron microscope study, Proc. of the Natl. Acad. of Sci. USA, 101(17) (2004) 6335–6340.

    Article  Google Scholar 

  29. S. Greek and F. Ericson, In situ tensile strength measurement and Weibull analysis of thick-film and thin film micromachined polysilicon structures, Mater. Res. Soc. Symp. Proc., 518 (1998) 51–56.

    Article  Google Scholar 

  30. J. A. Ruud, D. Josell and F. Spaepen, A new method for tensile testing of thin films, J. of Mater. Res., 8(1) (1993) 112–117.

    Article  Google Scholar 

  31. T. A. Berfield, J. K. Patel, R. G. Shimmin, P. V. Braun, J. Lambros and N. R. Sottos, Micro- and nanoscale deformation measurement of surface and internal planes via digital image correlation, Exp. Mech., 47 (2007) 51–62.

    Article  Google Scholar 

  32. W. G. Knauss and I. Chasiotis, Mechanical measurements at micron and nanometer scale, Mech. of Mat., 35 (2003) 217–231.

    Article  Google Scholar 

  33. B. Han, Recent advancements of Moiré and microscopic moiré interferometry for thermal deformation analyses of microelectronics devices, Exp. Mech., 38(4) (1998) 278–288.

    Google Scholar 

  34. H. Xie, B. Li, B. Xu and J. Castracane, Focused ion beam Moiré method, Optics and Lasers in Engineering, 40(3) (2002) 163–177.

    Article  Google Scholar 

  35. S. C. Yeon, Y.-H. Huh, D. I. Kim, J. H. Hahn, G. S. Kim and Y. H. Kim, Measurement of micro-tensile properties for hard coating material TiN, Advances in nondestructive evaluation, 270–273 (2004) 1113–1118.

    Google Scholar 

  36. C. S. Oh, H. J. Lee, S. G. Ko, S. W. Kim and H. G. Ahn, Comparison of the Young’s modulus of polysilicon film by tensile testing and nanoindentation, Sens. and Actuators A, 117(1) (2005) 151–158.

    Article  Google Scholar 

  37. E. Mazza, S. Abel and J. Dual, Experimental determination of mechanical propertties of Ni and Ni-Fe microbars, Microsys. Technol., 2 (1996) 197–202.

    Article  Google Scholar 

  38. D. A. LaVan and W. N. Sharpe Jr., Tensile testing of microsamples, Exp. Mech., 39 (1999) 210–216.

    Article  Google Scholar 

  39. M. Naraghi, T., Ozkan, I. Chasiotis and M. P. de Boer, MEMS platform for on-chip nanomechanical experiments with strong and highly ductile nanofibers, J. of Micromech. and Microeng., 20 (2010) 125022.

    Article  Google Scholar 

  40. B. Peng, Y. Zhu, I. Petrov and H. D. Espinosa A microelectromechanical system for nano-scale testing of one dimensional nanostructures, Sens. Lett., 6(1) (2008) 76–87.

    Article  Google Scholar 

  41. J. J. Brown, A. I. Baca, K. A. Bertness, D. A. Dikin, R. S. Ruoff and V. M. Bright, Tensile measurement of single crystal gallium nitride nanowires on MEMS test stages, Sens. and Actuators A, (2010) in press.

  42. R. Liu, H. Wang, X. Li, G. Ding and C. Yang, A microtensile method for measuring mechanical properties of MEMS materials, J. of Micromech. and Microeng., 18 (2008) 065002.

    Article  Google Scholar 

  43. Y. Zhu, C. Ke and H. D. Espinosa, Experimental determination of mechanical properties of Ni and Ni-Fe microbars, Microsyst. Technol., 2 (2007) 19–202.

    Google Scholar 

  44. M. T. A. Saif and N. C. MacDonald, Microinstruments for sub micron material studies, J. of Mat. Res., 13(12) (1998) 3353–3356.

    Article  Google Scholar 

  45. J. H. Han and M. T. A. Saif, In situ microtensile stage for electromechanical characterization of nanoscale freestanding films, Rev. of Sci. Instrum., 77(4) (2006) 045102.

    Article  Google Scholar 

  46. S. N. Lu, D. A. Dikin, S. L. Zhang, F. T. Fisher, J. Lee and R. S. Ruoff, Realization of nanoscale resolution with a micromachined thermally actuated testing stage, Rev. of Sci. Instrum., 756 (2004) 2154–2162.

    Article  Google Scholar 

  47. A. Corigliano, L. Domenella and G. Langfelder, On-chip mechanical characterization using an electro-thermomechanical actuator, Exp. Mech., 50 (2010) 695–707.

    Article  Google Scholar 

  48. S. J. Eppel, B. N. Smith, H. Kahn and R. Ballarini, Nano measurements with micro-devices: mechanical properties of hydrated collagen fibrils, J. of the Royal Soc. Interface, 3 (2006) 117–121.

    Article  Google Scholar 

  49. S. S. Hazra, M. S. Baker, J. L. Beuth and M. P. de Boer, Demonstration of an in situ on-chip tensile tester, J. of Micromech. and Microeng., 19 (2009) 082001.

    Article  Google Scholar 

  50. D. Zhang, W. Drissen, J. M. Breguet, R. Clavel and J. Michler, A high-sensitivity and quasi-linear capacitive sensor for nanomechanical testing applications, J. of Micromech. and Microeng., 19 (2009) 075003.

    Article  Google Scholar 

  51. S. Gravier, M. Coulombier, A. Safi, N. André, A. Boé, J.-P. Raskin and T. Pardoen, New on-chip nanomechanical testing laboratory, Applications to aluminum and polysilicon thin films, J. of Microelectromech. Syst., 18(3) (2009) 555–569.

    Article  Google Scholar 

  52. R. Agrawal, B. Peng and H. D. Espinosa, Experimentalcomputational investigation of ZnO nanowires strength and fracture, Nanolet., 9(12) (2009) 4177–4183.

    Article  Google Scholar 

  53. S. W. Cho and I. Chasiotis, Elastic properties and representative volume element of polycrystalline silicon for MEMS, Exp. Mech., 47 (2007) 37–49.

    Article  Google Scholar 

  54. C. Liu, On the minimum size of the representative volume element: an experimental investigation, Exp. Mech., 45(3) (2005) 238–243.

    Article  Google Scholar 

  55. J. R. Greer and W. D. Nix, Nanoscale gold pillars strengthened through dislocation starvation, Phys. Rev. B, 73 (2006) 245410.

    Article  Google Scholar 

  56. M. D. Uchic, D. M. Dimiduk, J. N. Florando and W. D. Nix, Sample dimensions influence strength and crystal plasticity, Science, 305(5986) (2004) 986–989.

    Article  Google Scholar 

  57. J. R. Greer, W. C. Oliver and W. D. Nix, Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients, Acta Mater., 53 (2005) 1821–1830.

    Article  Google Scholar 

  58. S. Shim, H. Bei, M. K. Miller, G. M. Pharr and E. P. George, Effects of focused ion beam milling on the compressive behavior of directionally solidified micropillars and the nanoindentation response of an electropolished surface, Acta Mater., 57 (2009) 503–510.

    Article  Google Scholar 

  59. Z. W. Shan, R. K. Mishra, S. A. Syed Asif, O. L. Warren and A. M. Minor, Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals, Nat. Mater., 7(2) (2008) 115–119.

    Article  Google Scholar 

  60. H. Zhang, B. E. Schuster, Q. Wei and K. T. Ramesh, The design of accurate micro-compression experiments, Scripta Mater., 54 (2006) 181–186.

    Article  Google Scholar 

  61. K. S. Chen, A. Ayon and S. M. Spearing, Controlling an testing the fracture strength of silicon on the mesoscale, J. of the Am Ceram Soc., 83(6) (2000) 1476–1484.

    Article  Google Scholar 

  62. S. M. Hu, Critical stress in silicon brittle fracture, and effect of ion-implantation and other surface treatments. J. of App Phys., 53(5) (1982) 3576–3580.

    Article  Google Scholar 

  63. A. Tuncay and A. T. Zehnder, A Monte-Carlo simulation of the effect of surface morphology on the fracture of nanobeams, Int. J. of Fracture, 148 (2007) 129–138.

    Article  Google Scholar 

  64. H. Liu, C. H. Pan and P. Liu, Dimension effect on mechanical behavior of silicon micro-cantilever beams, Measurement, 4 (2008) 885–895.

    Article  Google Scholar 

  65. G. J. McShane, M. Boutchich, A. Srikantha Phani, D. F. Moore and T. J. Lu, Young’s modulus measurement of thinfilm materials using micro-cantilevers, J. of Micromech. and Microeng., 16 (2006) 1926–1934.

    Article  Google Scholar 

  66. M. P. de Boer, F. W. DelRio and M. S. Baker, On-chip struc ture suite for free-standing metal film mechanical property testing, Part I-Analysis, Acta Mater., 56 (2008) 3344–3352.

    Article  Google Scholar 

  67. M. P. de Boer, A. D. Corwin, P. G. Kotula, M. S. Baker, J. R. Michael, J. Subhash and M. J. Shaw, On-chip laboratory suite for testing of free-standing metal film mechanical properties, Part II-Experiments, Acta Mater., 56 (2008) 3313–3326.

    Article  Google Scholar 

  68. A. Corigliano, F. Cacchione, S. Zerbini, in: Yang, F. and Li, J. C. M. Micro and nano mechanical testing of materials and devices, Springer, New York, USA Chapter 13 (2008).

    Google Scholar 

  69. J. J. Vlassak W. D. and Nix, A new bulge test technique for the determination of Young’s modulus and Poisson’s ratio of thin films, J. of Mater. Res., 7 (1992) 3242–3249.

    Article  Google Scholar 

  70. X. Wei, D. Lee, S. Shim, S. Chen and J. W. Kysar, Planestrain bulge test for nanocrystalline copper thin films, Scripta Mater., 57 (2007) 541–544.

    Article  Google Scholar 

  71. Y. Xiang and J. J. Vlassak, Bauschinger and size effects in thin-film plasticity, Acta Mater., 54 (2006) 5449–5460.

    Article  Google Scholar 

  72. P. M. Osterberg and S. D. Senturia, M-TEST: A test chip for MEMS material property measurement using electrostatically actuated test structures. J. of Microelectromech. Syst., 6(2) (1997) 107–118.

    Article  Google Scholar 

  73. J. Sharma and A. DasGupta, Effect of stress on the pull-in voltage of membranes for MEMS application, J. of Micromech. and Microeng., 19 (2009) 115021.

    Article  Google Scholar 

  74. G. Fleury, C. Malhaire, C. Populaire, M. Verdier, A. Devos, P. L. Charvet and J. P. Polizzi, Mechanical crosscharacterization of sputtered inconel thin films for MEMS applications, Sens. and Actuators B, 126 (2007) 48–51.

    Article  Google Scholar 

  75. G. Stoney, Proc. of the Royal Soc. A, 82 (1909) 172.

    Article  Google Scholar 

  76. J. Laconte, F. Iker, S. Jorez, N. André, J. Proost, T. Pardoen, D. Flandre and J.-P. Raskin, Thin film stress extraction using micromachined structures and wafer curvature measurements, Microelectron. Eng., 76 (2004) 219–226.

    Article  Google Scholar 

  77. H. D. Espinosa, B. C. Prorok and M. Fischer, A novel experimental technique for testing thin film and MEMS materials, Proc. SEM Annual Conf. on Expt. and App. Mech., Portland, (2001) 446–449.

  78. H. D. Espinosa, B. C. Prorok and M. Fischer, A methodology for determining mechanical properties of freestanding thin films and MEMS materials, J. of the Mech. and Phys. of Solids, 51 (2003) 47–67.

    Article  Google Scholar 

  79. Y. H. Huh, D. I. Kim, D. J. Kim, H. M. Lee, S. G. Hong, J. H. Park and C. D. Kee, Measurement of mechanical properties of thin film by membrane deflection test, Exp. Mech., (2009) DOI 10.1007/s11340-009-9247-4.

  80. H. D. Espinosa and B. Peng, A new methodology to investigate fracture toughness of freestanding thin films and MEMS materials, J. of Microelectromench. Syst., 14(1) (2005) 153–159.

    Article  Google Scholar 

  81. H. D. Espinosa, B. Peng, N. Moldovan, T. A. Friedmann, X. Xiao, D. C. Mancini, O. Auciello, J. Carlisle, C. A. Zorman and M. Merhegany, Elasticity, strength and toughness of single crystal silicon carbide, ultrananocrystalline diamond, and hydrogen-free tetrahedral amorphous carbon, App. Phys. Lett., 89(7) (2006) 073111.

    Article  Google Scholar 

  82. B. Peng, H. D. Espinosa, N. Moldovan, X. Xiao, O. Auciello and J. A. Carlisle, Fracture size effect in UNCD — applicability of weibull theory, J. of Mater. Res., 22(4) (2007) 913–925.

    Article  Google Scholar 

  83. G. Schiltges, D. Gsell and J. Dual, Torsional tests on microstructures: two methods to determine shear-moduli, Microsyst. Technol., 5 (1998) 22–29.

    Article  Google Scholar 

  84. N. A. Fleck, G. M. Muller, M. F. Ashby and J. W. Hutchinson, Strain gradient plasticity: theory and experiments, Acta Met. et Mater., 42(2) (1994) 475–487.

    Article  Google Scholar 

  85. D. J. Dunstan, B. Ehrler, R. Bossis, S. Joly and K. M. Y. P’ng, Elastic limit and strain hardening of thin wires in torsion, Phys. Rev. Lett., 103 (2009) 155501.

    Article  Google Scholar 

  86. A. P. Ternovskii, V. P. Alekhin, M. Kh. Shorshorov, M. M. Khrushchev and V. N. Skvortsov, The character of the variation of microhardness with indentation size and the deformation behavior of materials under conditions of concentrated surface loading, Zavodskaya Laboratoriya, 39 (1973) 1242.

    Google Scholar 

  87. S. I. Bulychev, V. P. Alekhin, M. Kh. Shorshorov, A. P. Ternovskii and G. D. Shnyrev, Determining young’s modulus from the indenter penetration diagram, Zavodskaya Laboratoriya, 41 (1975) 1137.

    Google Scholar 

  88. J. B. Pethica, R. Hutchings and W. C. Oliver, Hardness measurement at penetration depths as small as 20 nm, Taylor & Francis, London, UK (1983).

    Google Scholar 

  89. W. C. Oliver and G. M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. of Mater. Res., 7(6) (1992) 1564–1583.

    Article  Google Scholar 

  90. Y. I. Golovin, Nanoindentation and mechanical properties of solids in submicrovolumes, thin near-surface layers, and films: A review, Phys. of the Solid State, 50(12) (2008) 2205–2236.

    Article  Google Scholar 

  91. A. C. Fischer-Cripps, Critical review of analysis and interpretation of nanoindentation test data, Surface & Coatings Technol., 200 (2006) 4153–4165.

    Article  Google Scholar 

  92. Y.-T. Cheng and C.-M. Cheng, Scaling, dimensional analysis, and indentation measurements, Mater. Sci. and Eng. R, 44 (2004) 91–149.

    Article  Google Scholar 

  93. W. C. Oliver and G. M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, J. of Mater. Res., 19(1) (2004) 3–20.

    Article  Google Scholar 

  94. S. Kataria, S. Goyal, S. Dash and A. K. Tyagi, Nanomechanical characterization of thermally evaporated Cr thin films-FE analysis of the substrate effect, Thin Solid Films, 519 (2010) 312–318.

    Article  Google Scholar 

  95. T. Otiti, Y. Cao, S. M. Allameh, Z. Zong, O. Akogwu and W. O. Soboyejo, Nanoindentation measurements of mechanical properties of Ni thin films: Effect of microstructure and substrate modulus, Mater. and Manufacturing Process., 22(2) (2007) 195–205.

    Article  Google Scholar 

  96. Y. S. Wang, S. L. Qu, Y. X. Gai, S. Dong and Y. C. Liang, Residual strains of aluminum alloy characterized by nanoin dentation, Trans. of nonferrous metals Society of China, 19(3) (2009) 767–771.

    Article  Google Scholar 

  97. M. S. Kennedy, A. L. Olson, J. C. Raupp, N. R. Moody and D. F. Bahr, Coupling bulge testing and nanoindention to characterize materials properties of bulk micromachined structures, Microsyst. Technol., 11 (2005) 298–302.

    Article  Google Scholar 

  98. X. Li, B. Bhushan, K. Takashima, C.-W. Baek and Y.-K. Kim, Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques, Ultramicroscopy, 97 (2003) 481–494.

    Article  Google Scholar 

  99. G. P. Zhang and Z. G. Zhang, in: G. C. H. Sih, Multiscale fatigue crack initiation and propagation of engineering materials: Structural integrity and microstructural worthiness, Srpinger (2008).

  100. S. P. Hannula, J. Wanagel and C. Y. Li, A comparative study of the mechanical properties of bonding wire, ASTM Special Technical Publications 850, American Society for Testing and Materials, Philadelphia (1984).

  101. G. Kathibi, A. Betzwar-Kotas, V. Gröger and B. Weiss, A study of the mechanical and fatigue properties of metallic microwires, Fatigue and Fracture of Engineering Materials & Structures, 28 (2005) 723–733.

    Article  Google Scholar 

  102. R. Hofbeck, K. Hausmann, B. Ilschner and H. U. Kunzi, Fatigue of very thin copper and gold wires, Scripta Met., 20 (1986) 1601–1605.

    Article  Google Scholar 

  103. M. Judelewicz, H. U. Kunzi, N. Merk and B. Ilschner, Microstructural development during fatigue of copper foils 20–100 μm thick, Mater. Sci. and Eng. A, 186(1–2) (1994) 135–142.

    Article  Google Scholar 

  104. S. Hong and R. Weil, Low cycle fatigue of thin copper foils, Thin Solid Films, 283 (1996) 175–181.

    Article  Google Scholar 

  105. D. T. Read and J. W. Dally, Fatigue of microlithographically patterned free-standing aluminum thin-film under axial stress, J. of Electron. Packaging, 117 (1995) 1–6.

    Article  Google Scholar 

  106. D. T. Read, Tension-tension fatigue of copper thin films, Int. J. of Fatigue, 20(3) (1998) 203–209.

    Article  Google Scholar 

  107. D. Son, J.-J. Kim, T. W. Lim and D. Kwon, Evaluation of fatigue strength of LIGA nickel film by microtensile tests, Scripta Mater., 50 (2004) 1265–1269.

    Article  Google Scholar 

  108. Y. Nagai, T. Namazu and S. Inoue, Fatigue life evaluation for single- and poly-crystalline silicon films by pulsatingtension cyclic loading test, Surface and Interface Analysis, 40 (2008) 993–997.

    Article  Google Scholar 

  109. M. Hommel, O. Kraft and E. Arzt, A new method to study cyclic deformation of thin films in tension and compression, J. of Mater. Res., 14 (1999) 2373–2376.

    Article  Google Scholar 

  110. K. Takashima, Y. Higo, S. Sugiura and M. Shimojo, Fatigue crack growth behavior of micro-sized specimens prepared from an electroless plated Ni-P amorphous alloy thin film, Mater. Trans., 42 (2001) 68–73.

    Article  Google Scholar 

  111. G. P. Zhang, K. Takashima, M. Shimojo and Y. Higo, Fatigue behavior of microsized austenitic stainless steel specimens, Mater. Lett., 57 (2003) 1555–1560.

    Article  Google Scholar 

  112. R. Schwaiger and O. Kraft, High cycle fatigue of thin silver films investigated by dynamic microbeam deflection, Scripta Met., 41 (1999) 823–829.

    Article  Google Scholar 

  113. Y. C. Wang, A. Misra and R. G. Hoagland, Fatigue properties of nano scale Cu/Nb multilayers, Scripta Met., 54 (2006) 1593–1598.

    Article  Google Scholar 

  114. C. L. Muhlstein, Characterization of structural films using microelectromechanical resonators, Fatigue & Fracture of Eng. Mater. & Struct., 28(8) (2005) 711–721.

    Article  Google Scholar 

  115. R. Monig, R. R. Keller and C. A. Volkert, Thermal fatigue testing of thin film metal films, Rev. of Sci. Instrum., 75 (2004) 4997–5004.

    Article  Google Scholar 

  116. J. Bagdahn and W. Sharpe, Fatigue of polycrystalline silicon under long-term cyclic loading, Sens. and Actuators A, 103 (2003) 9–15.

    Article  Google Scholar 

  117. T. Ando, M. Shikida and K. Sato, Tensile-mode fatigue testing of silicon films as structural materials for MEMS, Sens. and Actuators A, 93 (2001) 70–75.

    Article  Google Scholar 

  118. H. S. Cho, K. J. Hemker, K. Lian, J. Goettert and G. Dirras, Measured mechanical properties of LIGA Ni structures, Sens. and Actuators A, 103 (2003) 59–63.

    Article  Google Scholar 

  119. M.-T. Lin, C.-J. Tong and K.-S. Shiu, Monotonic and fatigue testing of freestanding submicron thin beams application for MEMS, Microsyst. Technol., 14 (2008) 1041–1048.

    Article  Google Scholar 

  120. C.-Y. Kim, J.-H. Song and D.-H. Lee, Development of a fatigue testing system for thin films, Int. J. of Fatigue, 31 (2008) 736–742.

    Article  Google Scholar 

  121. D. H. Alsem, R. Timmerman, B. L. Boyce, E. A. Stach, J. Th. M. de Hosson and R. O. Ritchie, Very high-cycle fatigue failure in micron-scale polycrystalline films: Effects of environment and surface oxide thickness, J. of App. Phys., 101 (2007) 013515.

    Article  Google Scholar 

  122. T. Hua, H. Xie, X. Feng, X. Wang, J. Zhang, P. Chen and Q. Zhang, A new dynamic device for low-dimensional materials testing, Rev. of Sci. Instrum., 80 (2009) 126108.

    Article  Google Scholar 

  123. S. He, J. S. Chang, L. Li and H. Ho, Characterization of Young’s modulus and residual stress gradient of metal-MUMPs electroplatednickel film, Sens. and Actuators A, 154, (2009) 149–156.

    Article  Google Scholar 

  124. L. M. Zhang, D. Uttamchandani and B. Culshaw, Measurement of the mechanical properties of silicon microresonators, Sens. and Actuators A, 29 (1991) 79–84.

    Article  Google Scholar 

  125. T. Ikehara, R. A. E. Zwijze and K. Ikeda, New method for an accurate determination of residual strain in polycrystalline silicon films by analyzing resonant frequencies of micromachined beams, J. of Micromech. and Microeng., 11 (2001) 55–60.

    Article  Google Scholar 

  126. C. Q. Chen, Y. Shi, Y. S. Zhang, J. Zhu and Y. J. Yan, Size dependance of Young’s modulus in ZnO nanowires, Phys. Rev. Letters, 96 (2006) 075505.

    Article  Google Scholar 

  127. M. Alfano and L. Pagnotta, A non destructive technique for the elastic characterization of thin isotropic plates, NDT&E international, 40(2) (2007) 112–120.

    Article  Google Scholar 

  128. D. R. França and A. Blouin, All-optical measurement of in-plane and out-of-plane Young’s modulus and Poisson’s ratio in silicon wafers by means of vibration modes, Meas. Sci. and Technol., 15 (2004) 859–868.

    Article  Google Scholar 

  129. H. Ogi, N. Nakamura, M. Hirao, Advanced resonant ultrasound spectroscopy for measuring anisotropic elastic constants of thin films, Fatigue & Fracture of Eng. Mater. & Struct., 28(8) (2005) 657–663.

    Article  Google Scholar 

  130. L. Kiesewetter, J.-M. Zhang, D. Houdeau and A. Steckenborn, Determination of Young’s moduli of microelectromechanical thin films using the resonance method, Sens. and Actuators A, 35(2) (1992) 153–159.

    Article  Google Scholar 

  131. C.-W. Baek, Y.-K. Kim, Y. Ahn and Y.-H. Kim, Measurement of the mechanical properties of electroplated gold thin films using micromachined beam structures, Sens. and Actuators A, 1–3, (2005) 17–27.

    Article  Google Scholar 

  132. G. Rehder and M. N. P. Carreno, PECVD a-SiC: Young’s modulus obtained by MEMS resonant frequency, J. of Non-Crystalline Solids, 354 (2007) 19–25.

    Google Scholar 

  133. X. D. Bai, P. X. Gao, Z. L. Wang and E. G. Wang, Dualmode mechanical resonance of individual ZnO Nanobelts, App. Phys. Lett., 82(26) (2003) 4806–4808.

    Article  Google Scholar 

  134. Y.-J. Kim and M. G. Allen, In situ measurement of mechanical properties of polyimide films using micromachined resonant string structures, IEEE Trans. on Components and Packaging Technol., 22(2) (1996) 282–290.

    Google Scholar 

  135. S. Banerjee, N. Gayathri, S. R. Shannigrahi, S. Dash, A. K. Tyagi and B. Raj, Imaging distribution of local stiffness over surfaces using atomic force acoustic microscopy, J. of Phys. D: App. Phys., 40(8) (2007) 2539–2547.

    Article  Google Scholar 

  136. F. Mege, F. Volpi and M. Verdier, Mapping of elastic modulus at sub-micrometer scale with acoustic contact resonance AFM, Microelectron. Eng., 87(3) (2010) 426–420.

    Article  Google Scholar 

  137. D. Passeri, M. Rossi, A. Alippi, A. Bettucci, A. Serra, E. Filippo, M. Lucci and I. Davoli, Atomic force acoustic microscopy characterization of nanostructured selenium-tin films, Superlattices and Microstructures, 44(4–5) (2008) 641–649.

    Article  Google Scholar 

  138. D. C. Hurley, K. Shen, N. M. Jennett and J. A. Turner, Atomic force acoustic microscopy methods to determine thin-film elastic properties, J. of App. Phys., 94(4) (2003) 2347–2354.

    Article  Google Scholar 

  139. G. Stan, C. V. Ciobanu, P. M. Parthangal and R. F. Cook, Diameter-dependent radial and tangential elastic moduli of ZnO nanowires, Nano Letters, 7(12) (2007) 3691–3697.

    Article  Google Scholar 

  140. V. T. Srikar, A. K. Swan, M. S. Unlu, B. B. Goldberg and S. M. Spearing, Micro-raman measurement of bending stresses in micromachined silicon flexure, J. of Microelectromech. Syst., 12(6) (2003) 779–787.

    Article  Google Scholar 

  141. L. De Wolf, Stress measurements in Si microelectronics devices using raman spectroscopy, J. of Raman Spectroscopy, 30 (1999) 877–883.

    Article  Google Scholar 

  142. S. Cho, J. F. Cárdenas-García and I. Chasiotis, Measurement of nanodisplacements and elastic properties of MEMS via the microscopic hole method, Sens. and Actuators A, 120 (2005) 163–171.

    Article  Google Scholar 

  143. P. Djemia, E. Dogheche, M. I. Barros and L. Vandenbulcke, Mechanical properties of diamond films: A comparative study of polycrystalline and smooth fine-grained diamonds by Brillouin light scattering, J. of App. Phys., 90 (2001) 3771–3779.

    Article  Google Scholar 

  144. I. Chasiotis and W. G. Knauss, A new microtensile tester for the study of MEMS materials with the aid of atomic force microscopy, Exp. Mech., 42(1) (2002) 51–57.

    Article  Google Scholar 

  145. M. A. Haque and M. T. A. Saif, Mechanical behavior of 30–50 nm thick aluminum films under uniaxial tension, Scripta Mater., 47(12) (2002) 863–867.

    Article  Google Scholar 

  146. M. A. Haque and M. T. A. Saif, In-situ tensile testing of nano-scale specimens in SEM and TEM, Exp. Mech., 42(1) (2002) 123–128.

    Article  Google Scholar 

  147. D. S. Gianola and W. N. Sharpe Jr., Techniques for testing thin films in tension, Exp. Techniques, 28(5) (2004) 23–27.

    Article  Google Scholar 

  148. W. N. Sharpe Jr., O. Jadaan, G. M. Beheim, G. D. Quinn, N. N. Nemeth, Fracture strength of silicon carbide microspecimens, J. of Microelectromech. Syst., 14(5) (2005) 903–913.

    Article  Google Scholar 

  149. T. Yoshioka, T. Ando, M. Shikida and K. Sato, Tensile testing of SiO2 and Si3N4 films carried out on a silicon chip, Sens. and Actuators A, 82(1–3) (2000) 291–296.

    Article  Google Scholar 

  150. R. Modlinski, A. Witvrouw, A. Verbist, R. Puers and I. De Wolf, Mechanical characterization of poly-SiGe layers for CMOS-MEMS integrated application, J. of Micromech. and Microeng., 20(1) (2010) 015014.

    Article  Google Scholar 

  151. H. D. Espinosa, Y. Zhu, N. Moldovan, Design and operation of a MEMS-based material testing system for nanomechanical characterization, J. of Microelectromech. Syst., 16(5) (2007) 1219–1231.

    Article  Google Scholar 

  152. Y. Zhu and H. D. Espinosa, An electromechanical material testing system for in-situ electron microscopy and applications, Proc. of the Natl. Acad. of Sci. USA, 102(41) (2005) 14503–14508.

    Article  Google Scholar 

  153. M. D. Uchic and D. A. Dimiduk, A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing, Mater. Sci. and Eng., 400 (2005) 268–278.

    Article  Google Scholar 

  154. J. R. Greer and W. D. Nix, Size dependence of mechanical properties of gold at the sub-micron scale, App. Phys. A, 80(8) (2005) 1625–1629.

    Article  Google Scholar 

  155. H. Bei, S. Shim, E. P. George, M. K. Miller, E. G. Herbert and G. M. Pharr, Compressive strengths of molybdenum alloy micro-pillars prepared using a new technique, Scripta Mater., 57(5) (2007) 397–400.

    Article  Google Scholar 

  156. S. Ho, C. Ravindran and G. D. Hibbard, Magnesium alloy micro-truss materials, Scripta Mater., 62(1) (2010) 21–24.

    Article  Google Scholar 

  157. W. J. Porter, M. D. Uchic, R. John and N. B. Barnas, Compression property determination of a gamma titanium aluminide alloy using micro-specimens, Scripta Mater., 61(7) (2009) 678–681.

    Article  Google Scholar 

  158. B. Moser, K. Wasmer, L. Barbieri and J. Michler, Strength and fracture of Si micropillars: A new scanning electron microscopy-based micro-compression test, J. of Mater. Res., 22(4) (2007) 1004–1011.

    Article  Google Scholar 

  159. M. Legros, B. R. Elliot, M. N. Rittner, J. R. Weertman and K. J. Hemker, Microsample tensile testing of nanocrystalline metals, Philos. Mag. A, 80(4) (2000) 1017–1026.

    Article  Google Scholar 

  160. R. L. Edwards, G. Coles and W. N. Sharpe Jr., Comparison of tensile and bulge tests for thin-film silicon nitride, Exp. Mech., 44(1) (2004) 49–54.

    Article  Google Scholar 

  161. M. Qasmi, P. Delobelle, F. Richard and A. Bosseboeuf, Effect of the residual stress on the determination through nanoindentation technique of the Young’s modulus of W thin film deposit on SiO2/Si substrate, Surface & Coatings Technol., 200(14–15) (2006) 4185–4194.

    Article  Google Scholar 

  162. J. N. Florando and W. D. Nix, A microbeam bending method for studying stress-strain relations for metal thin films on silicon substrates, J. of Mech. and Phys. of Solids, 53(3) (2004) 619–638.

    Article  Google Scholar 

  163. J.-P. Salvetat, A. Kulik, J.-M. Bonard, G. A. D. Briggs, T. Stockli, K. Metenier, S. Bonnamy, F. Beguin, N. A. Burnham and L. Forro, Elastic modulus of ordered and disordered multiwalled carbon nanotubes, Advanced Materials, 11(2) (1999) 161–165.

    Article  Google Scholar 

  164. C. F. Tsou, H. C. Li, T. H. Lai, C. C. Hsu and W. L. Feng, Bending characterization of electroplated nickel microbeams, Sens. and Mater., 19(2) (2007) 79–94.

    Google Scholar 

  165. T. Namazu, Y. Isono and T. Tanaka, Evaluation of size effect on mechanical properties of single crystal silicon by nanoscale bending test using AFM, J. of Microelectromech., Syst. 9(4) (2000) 450–459.

    Article  Google Scholar 

  166. A. J. Kalkman, A. H. Verbruggen and G. C. A. M. Janssen, Young’s modulus measurements and grain boundary sliding in free-standing thin metal films, App. Phys. Lett., 78(18) (2001) 2673–2675.

    Article  Google Scholar 

  167. B. Peng, N. Pugno and H. D. Espinosa, An analysis of the membrane deflection experiment used in the investigation of mechanical properties of freestanding submicron thin films, Int. J. of Solids and Structures, 43(11–12) (2006) 3292–3305.

    Article  MATH  Google Scholar 

  168. N. Pugno, B. Peng and H. D Espinosa, Pre dictions of strength in MEMS components — A novel experimentaltheoretical approach, I. J. of Solids and Structures, 42(2) (2005) 647–661.

    Article  MATH  Google Scholar 

  169. H. D. Espinosa, B. C. Prorok and B. Peng, Plasticity size effects in freestanding submicron polycrystalline FCC films subjected to pure tension, J. of Mech Phys. And Solid, 52(3) (2004) 667–689.

    Article  Google Scholar 

  170. L. Wang, C. Liang and B. C. Prorok, A comparison of testing methods in assessing the elastic properties of sputter-deposited gold films, Thin Solid Films, 515(20–21) (2007) 7911–7918.

    Article  Google Scholar 

  171. A. Reddy, H. Kahn and A. H. Heuer, A MEMS-based evaluation of the mechanical properties of metallic thin films, J. of Microelectomech. Syst., 16(3) (2007) 650–658.

    Article  Google Scholar 

  172. S. Nagappa, M. Zupan and C. A. Zorman, Mechanical characterization of chemical-vapor-deposited polycrystalline 3C silicon carbide thin films, Scripta Mater., 59(9) (2008) 995–998.

    Article  Google Scholar 

  173. C. J. Tong and M. T. Lin, Design and development of a novel paddle test structure for the mechanical behavior measurement of thin films application for MEMS, Microsyst. Technol., 15(8) (2009) 1207–1216.

    Article  MathSciNet  Google Scholar 

  174. S. Sanjabi, M. Naderi, H. Z. Bidaki and S. K. Sadrnezhaad, Characterization of sputtered NiTi shape memory alloy thin films, Scientia Iranica Transaction, 16(3) (2009) 248–252.

    Google Scholar 

  175. K. C. Maner, M. R. Begley and W. C. Oliver, Nanomechanical testing of circular freestanding polymer films with sub-micron thickness, Acta Mater., 52(19) (2004) 5451–5460.

    Article  Google Scholar 

  176. C. Y. Nam, P. Jaroenapibal, D. E. Luzzi, S. Evoy and J. E. Fischer, Diameter-dependent electromechanical properties of GaN nanowires, Nano Letters, 6(2) (2006) 153–158.

    Article  Google Scholar 

  177. G. Stan and W. Price, Quantitative measurements of indentation moduli by atomic force acoustic microscopy using a dual reference method, Rev. of Sci. Instrum., 77(10) (2006) 103707.

    Article  Google Scholar 

  178. M. Kopycinska-Müller, R. H. Geiss, J. Muller and D. C. Hurley, Elastic-property measurements of ultrathin films using atomic force acoustic microscopy, Nanotechnology, 16(6) (2005) 703–709.

    Article  Google Scholar 

  179. F. Luo, K. W. Gao, X. L. Pang, H. S. Yang, L. J. Yang, L. J. Qiao and Y. B. Yang, Characterization of the mechanical properties and failure modes of hard coatings deposited by RF magnetron sputtering, Surface & Coatings Technol., 202(14) (2008) 3354–3359.

    Article  Google Scholar 

  180. D. T. Read, R. R. Keller, N. Barbosa and R. Geiss, Nanoindentation round robin on thin film copper on silicon, Metall. and Mater. Trans., 38A(13) (2007) 2242–2248.

    Article  Google Scholar 

  181. V. Chawla, R. Jayaganthan and R. Chandra, Microstructural characteristics and mechanical properties of magnetron sputtered nanocrystalline TiN films on glass substrate, Bulletin of Materials Science, 32(2) (2009) 117–123.

    Article  Google Scholar 

  182. K. M. Lee, C. D. Yeo and A. A. Polycarpou, Mechanical property measurements of thin-film carbon overcoat on recording media towards 1 Tbit/in(2), J. of App. Phys., 99(8) (2006) 08G906.

    Article  Google Scholar 

  183. M. T. Lin, C. J. Tong and K. S. Shiu, Novel microtensile method for monotonic and cyclic testing of freestanding copper thin films, Exp. Mech., 50(1) (2010) 55–64.

    Article  Google Scholar 

  184. W. H. Chuang, R. K. Fettig and R. Ghodssi, An electrostatic actuator for fatigue testing of low-stress LPCVD silicon nitride films, Sens. and Actuators A, 121 (2005) 557–565.

    Article  Google Scholar 

  185. H. Kahn, R. Ballarini, R. L. Mullen and A. H. Heuer, Electrostatically actuated failure of microfabricated polysilicon fracture mechanics specimens, Proc. of the Royal Soc. A, 455 (1999) 3807–3823.

    Article  Google Scholar 

  186. C. L. Muhlstein, S. B. Brown and R. O. Ritchie, High-cycle fatigue and durability of polycrystalline silicon thin films in ambient air, Sens. and Actuators A, 94 (2001) 177–188.

    Article  Google Scholar 

  187. J.-H. Park, Y.-B. Chun, Y.-J. Kim, Y.-H. Huh and H.-J. Lee, A study on the fatigue behavior of electro-plated NiCo thin film for probe tip applications, Materialwissenschaft und Werkstofftechnik, 40(3) (2009) 187–191.

    Article  Google Scholar 

  188. A. Corigliano, F. Cacchione, B. de Masi and C. Riva, Onchip electrostatically actuated bending tests for the mechanical characterization of polysilicon at the micro scale, Meccanica, 40 (2005) 485–503.

    Article  MATH  Google Scholar 

  189. H. Ni and X. D. Li, Young’s modulus of ZnO nanobelts measured using atomic force microscopy and nanoindentation techniques, Nanotechnology, 17(14) (2006) 3591–3597.

    Article  Google Scholar 

  190. M. Naraghi, S. N. Arshad, I. Chasiotis, 2011, Molecular orientation and mechanical property size effects in electrospun polyacryolonitrile nanofibers, Polymer, doi: 10.1016/j.polymer.2011.02.013.

  191. C. Yamahata, D. Collard, T. Tetsuya, M. Kumemura, G. Hashiguchi and H. Fujita, Humidiy dependence of charge transport through DNA revealed by silicon-based nanotweezers manipulation, Biophysical Journal, 94 (2008) 63–70.

    Article  Google Scholar 

  192. R. A. Bernal, R. Agrawal, B. Peng, K. A. Bertness, N. A. Sanford, A. V. Davydov and H. D. Espinosa, Effect of growth orientation and diameter on the elasticity of GaN nanowires. A combined in situ TEM and atomistic modeling investigation, Nano Letters, 11(2) (2011) 548–555.

    Article  Google Scholar 

  193. Z. Yang, R. N. Wang, S. Jia, D. Wang, B. S. Zhang, K. M. Lau and K. J. Chen, Mechanical characterization of suspended GaN microstructures fabricated by GaN-on-patterned-silicon technique, Applied Physics Letters, 88 (2006) 041913.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria F. Pantano.

Additional information

This paper was recommended for publication in revised form by Editor Maenghyo Cho

Maria F. Pantano. She was born in Italy. She received her B. S. degree and M.S. degree in Mechanical Engineering from University of Calabria (Italy) in 2007 and 2009, respectively. Since 2009 she is a Ph.D student at the Department of Mechanical Engineering at University of Calabria. Her scientific interests include the mechanical characterization of materials at micro/nanoscale and design and modeling of microelectromechanical systems.

Horacio D. Espinosa. He is the James and Nancy Farley Professor of Mechanical Engineering at Northwestern University. He received his Ph.D. in Applied Mechanics from Brown University, in 1992. He has made contributions in the areas of dynamic failure of advanced materials, micro and nanomechanics. He has published over 200 technical papers. Professor Espinosa is a member of the European Academy of Arts and Sciences, the Russian Academy of Engineering and Fellow of AAM, ASME, and SEM. His research interests are on biomimetics, size scale electro-mechanical properties of nanomaterials, NEMS, and the development of microdevices for single cell studies.

Leonardo Pagnotta. He is currently a full professor at the Faculty of Engineering at University of Calabria, Italy. He graduated in Mechanical Engineering at University of Calabria in 1984 and received his Ph.D in Mechanics of Materials from University of Pisa (Italy) in 1990. His research interests include mechanical behaviour of materials, experimental mechanics and mechanical engineering design.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pantano, M.F., Espinosa, H.D. & Pagnotta, L. Mechanical characterization of materials at small length scales. J Mech Sci Technol 26, 545–561 (2012). https://doi.org/10.1007/s12206-011-1214-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-011-1214-1

Keywords