Skip to main content
Log in

Seismic Slope Stability Evaluation Considering Rock Mass Disturbance Varying in the Slope

  • Geotechnical Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

Seismic effect is one of the most commonly considered factors in rock slope safety design. This study adopts the finite element lower bound limit analysis method to study the seismic stability of disturbed rock slopes considering inhomogeneity caused by rock mass disturbance. Moreover, this research investigates different earthquake magnitudes by considering various seismic coefficients. Results are presented as seismic rock slope stability charts. In addition, the recommended blasting damage zones are also investigated in this study. Results show the chart solutions can provide a reasonable tool for the preliminary evaluations of the seismic safety factors for rock slope stability. The case studies demonstrate that a safe design can be done if the earthquake effects are considered reasonably. Moreover, consideration of varying rock mass disturbance in the slope is helpful to capture the failure mechanism more realistically when compared to the slope case without varying rock mass disturbance. For comparison purposes, the conventional limit equilibrium analysis and the equivalent Mohr-Coulomb parameters are used to perform analyses of the rock slope stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Areias, P. and Rabczuk, T. (2013). “Finite strain fracture of plates and shells with configurational forces and edge rotations.” International Journal for Numerical Methods in Engineering, vol. 94, no. 12, pp. 1099–1122. DOI: 10.1002/nme.4477.

    Article  MathSciNet  MATH  Google Scholar 

  • Areias, P., Rabczuk, T., and Camanho, P. P. (2014). “Finite strain fracture of 2D problems with injected anisotropic softening elements.” Theoretical and Appied Fracture Mechanics, vol. 72, pp. 50–63. DOI: 10.1016/j.tafmec.2014.06.006.

    Article  Google Scholar 

  • Areias, P., Rabczuk, T., and Dias-da-Costa, P. P. (2013). “Element-sise fracture algorithm based on rotation of edges.” Engineering Fracture Mechanics, vol. 110, pp. 113–137. DOI: 10.1016/j.engfracmech.2013.06.006.

    Article  Google Scholar 

  • Areias, P., Msekh, M. A., and Rabczuk, T. (2016). “Damage and fracture algorithm using the screened Poisson equation and local remeshing.” Engineering Fracture Mechanics, vol. 158, pp. 116–143. DOI: 10.1016/j.engfracmech.2015.10.042.

    Article  Google Scholar 

  • Areias, P., Reinoso, J., Camanho, P. P., Cesar de Sa, J., and Rabczuk, T. (2018). “Effective 2D and 3D crack propagation with local mesh refinement and the screened Poisson equation.” Engineering Fracture Mechanics, vol. 189, pp. 339–360. DOI: 10.1016/j.engfracmech.2017.11.017.

    Article  Google Scholar 

  • Baker, R., Shukha, R., Operstein, V., and Frydman, S. (2006). “Stability charts for pseudo-static slope stability analysis.” Soil Dynamics and Earthquake Engineering, vol. 26, no. 9, pp. 813–823. DOI: 10.1016/j.compgeo.2014.12.008.

    Article  Google Scholar 

  • Barton, N. (2002). “Some new Q-value correlations to assist in site characterisation and tunnel design.” International Journal of Rock Mechanics and Mining Sciences, vol. 39, no. 2, pp. 185–216. DOI: 10.1016/S1365-1609(02)00011-4.

    Article  Google Scholar 

  • Bieniawski, Z. T. (1976). “Exploration for rock engineering.” Proceedings of the Symposium on Exploration for Rock Engineering, Johannesburg, South Africa.

    Google Scholar 

  • Bishop, A. W. (1955). “The use of the slip circle in the stability analysis of slopes.” Geotechnique, vol. 5, no. 1, pp. 7–17. DOI: 10.1680/geot.1955.5.1.7.

    Article  Google Scholar 

  • Bray, J. D. and Travasarou, T. (2009). “Pseudostatic coefficient for use in simplified seismic slope stability evaluation.” Journal of Geotechnical and Geoenvironmental Engineering, vol. 135, no. 9, pp. 1336–1340. DOI: 10.1061/(ASCE)GT.1943-5606.000001.

    Article  Google Scholar 

  • Chang, C.-J., Chen, W. F., and Yao, J. T. (1984). “Seismic displacements in slopes by limit analysis.” Journal of Geotechnical Engineering, vol. 110, no. 7, pp. 860–874. DOI: 10.1061/(ASCE)0733-9410(1984)110:7(860).

    Article  Google Scholar 

  • DeWayne, H. and Julie, M. (1997). Guidelines for evaluating and mitigating seismic hazards in California, The Public Information Offices of the California Geological Survey, CA, USA.

    Google Scholar 

  • Fu, W. and Liao, Y. (2010). “Non-linear shear strength reduction technique in slope stability calculation.” Computers and Geotechnics, vol. 37, no. 3, pp. 288–298. DOI: 10.1016/j.compgeo.2009.11.002.

    Article  Google Scholar 

  • Hoek, E. (2012). Blast damage factor D, Technical Note for RocNews.

    Google Scholar 

  • Hoek, E. and Brown, E. T. (1980). Underground excavations in rock, Institution of Mining and Metallurgy, London, UK.

    Google Scholar 

  • Hoek, E., Carranza-Torres, C., and Corkum, B. (2002). “Hoek-Brown failure criterion-2002 edition.” Proceedings of NARMS-TAC, Toronto, Canada, pp. 267–273.

    Google Scholar 

  • Hoek, E. and Karzulovic, A. (2000). “Rock mass properties for surface mines.” Slope Stability in Surface Mining, W. A. Hustrulid, M. K. McCarter and D. J. A. van Zyl, Eds., Society for Mining, Metallurgical and Exploration (SME), Littleton, CO, USA, pp. 59–70.

    Google Scholar 

  • Hoek, E., Marinos, P., and Benissi, M. (1998). “Applicability of the Geological Strength Index (GSI) classification for very weak and sheared rock masses. The case of the Athens Schist Formation.” Bulletin of Engineering Geology and the Environment, vol. 57, no. 2, pp. 151–60. DOI: 10.1007/s100640050031.

    Article  Google Scholar 

  • Hung, C., Liu, C. H., Lin, G. W., and Leshchinsky, B. (2018). “The Aso-Bridge coseismic landslide: A numerical investigation of failure and runout behavior using finite and discrete element methods.” Bulletin of Engineering Geology and the Environment, pp. 1–14. DOI: 10.1007/s10064-018-1309-3.

    Google Scholar 

  • Hynes-Griffin, M. E. and Franklin, A. G. (1984). Rationalizing the seismic coefficient method, DTIC Document.

    Google Scholar 

  • Janbu, N. (1973). “Slope stability computations, embankment-dam engineering,” vol Casagrande, Wiley, New York, NY, USA.

    Google Scholar 

  • Jiang, X. Y., Cui, P., and Liu, C. Z. (2016). “A chart-based seismic stability analysis method for rock slopes using Hoek-Brown failure criterion.” Engineering Geology, vol. 209, pp. 196–208. DOI: 10.1016/j.enggeo.2016.05.015.

    Article  Google Scholar 

  • Li, A., Khoo, S., Lyamin, A., and Wang, Y. (2016). “Rock slope stability analyses using extreme learning neural network and terminal steepest descent algorithm.” Automation in Construction, vol. 65, pp. 42–50. DOI: 10.1016/j.autcon.2016.02.004.

    Article  Google Scholar 

  • Li, A., Lyamin, A., and Merifield, R. (2009). “Seismic rock slope stability charts based on limit analysis methods.” Computers and Geotechnics, vol. 36, no. 1, pp. 135–148.

    Article  Google Scholar 

  • Li, A., Merifield, R., and Lyamin, A. (2008). “Stability charts for rock slopes based on the Hoek-Brown failure criterion.” International Journal of Rock Mechanics and Mining Sciences, vol. 45, no. 5, pp. 689–700. DOI: 10.1016/j.compgeo.2008.01.004.

    Article  Google Scholar 

  • Li, A., Merifield, R., and Lyamin, A. (2011). “Effect of rock mass disturbance on the stability of rock slopes using the Hoek-Brown failure criterion.” Computers and Geotechnics, vol. 38, no. 4, pp. 546–558. DOI: 10.1016/j.compgeo.2011.03.003.

    Article  Google Scholar 

  • Li, A., Qian, Z., Kong, V., and Lyamin, V. (2013). “Comparisons of seismic rock slope stability assessments between the Hoek-Brown and Mohr Coulomb criteria.” Proceedings of the 22nd Australasian Conference on the Mechanics of Structures and Materials, pp. 1–6.

    Google Scholar 

  • Li, H., Xiao, K., and Liu, Y. (2007). “Factor of safety analysis of bedding rock slope under seismic load.” Chin J Rock Mech Eng, vol. 26, no. 12, pp. 2385–2394.

    Google Scholar 

  • Lim, K., Li, A., Schmid, A., and Lyamin, A. (2017). “Slope-stability assessments using finite-element limit-analysis methods.” International Journal of Geomechanics, Vol. 17, No. 2, DOI: 10.1061/(ASCE)GM.1943-5622.0000715.

    Google Scholar 

  • Lyamin, A. and Sloan, S. (2002). “Lower bound limit analysis using non-linear programming.” International Journal for Numerical Methods in Engineering, vol. 55, no. 5, pp. 573–611. DOI: 10.1002/nme.511.

    Article  MATH  Google Scholar 

  • Marinos, P., Marinos, V., and Hoek, E. (2007). “Geological Strength Index (GSI). A characterization tool for assessing engineering properties for rock masses.” Underground Works under Special Conditions, M. Romana, A. Perucho, and C. Olalla, Eds., Taylor and Francis, Lisbon, Spain, pp. 13–21.

    Chapter  Google Scholar 

  • Marinos, V., Marinos, P., and Hoek, E. (2005). “The geological strength index: Applications and limitations.” Bulletin of Engineering Geology and the Environment, vol. 64, no. 1, pp. 55–65. DOI: 10.1007/s10064-004-0270-5.

    Article  Google Scholar 

  • Michalowski, R. L. (2002). “Stability charts for uniform slopes.” Journal of Geotechnical and Geoenvironmental Engineering, vol. 28, no. 4, pp. 351–355. DOI: 10.1061/(ASCE)1090-0241(2002)128:4(351).

    Article  MathSciNet  Google Scholar 

  • Qian, Z., Li, A., Lyamin, A., and Wang, C. (2017). “Parametric studies of disturbed rock slope stability based on finite element limit analysis methods.” Computers and Geotechnics, vol. 81, pp. 155–166. DOI: 10.1016/j.compgeo.2016.08.012.

    Article  Google Scholar 

  • Qian, Z., Li, A., Merifield, R., and Lyamin, A. (2015). “Slope stability charts for two-layered purely cohesive soils based on finite-element limit analysis methods.” International Journal of Geomechanics, Vol. 15, No. 3, 06014022, DOI: 10.1061/(ASCE)GM.1943-5622.0000438.

    Google Scholar 

  • Rabczuk, T., Zi, G., Bordas, S., and Nguyen-Xuan, H. (2010). “A simple and robust three-dimensional cracking-particle method without enrichment.” Computer Methods in Applied Mechanics and Engineering, vol. 199, Nos. 37–40, pp. 2437–2455. DOI: 10.1016/j.cma.2010.03.031.

    Article  MATH  Google Scholar 

  • Ren, H., Zhuang, X., Cai, Y., and Rabczuk, T. (2016). “Dual-horizon peridynamics.” International Journal for Numerical Methods in Engineering, vol. 108, no. 12, pp. 1451–1476. DOI: 10.1002/nme.5257.

    Article  MathSciNet  Google Scholar 

  • Ren, H., Zhuang, X., Cai, Y., and Rabczuk, T. (2017). “Dual-horizon peridynamics: A stable solution to varying horizons.” Computer Methods in Applied Mechanics and Engineering, vol. 318, pp. 762–7826. DOI: 10.1016/j.cma.2016.12.031.

    Article  MathSciNet  Google Scholar 

  • Saade, A., Abou-Jaoude, G., and Wartman, J. (2016). “Regional-scale c0-seismic landslide assessment using limit equlibrium analysis.” Engineering Geology, vol. 204, pp. 53–64. DOI: 10.1016/j.enggeo.2016.02.004.

    Article  Google Scholar 

  • Seed, H. B. (1979). “Considerations in the earthquake-resistant design of earth and rockfill dams.” Geotechnique, vol. 29, no. 3, pp. 215–263. DOI: 10.1680/geot.1979.29.3.215.

    Article  Google Scholar 

  • Shen, J., Karakus, M., and Xu, C. (2013). “Chart-based slope stability assessment using the Generalized Hoek-Brown criterion.” International Journal of Rock Mechanics and Mining Sciences, vol. 64, pp. 210–219. DOI: 10.1016/j.ijrmms.2013.09.002.

    Article  Google Scholar 

  • Shou, K. J. and Wang, C. F. (2003). “Analysis of the Chiufengershan landslide triggered by the 1999 Chi-Chi earthquake in Taiwan.” Engineering Geology, vol. 68, Nos. 3–4, pp. 237–50. DOI: 10.1016/S0013-7952(02)00230-2.

    Article  Google Scholar 

  • Shou, K. J., Wu, C. C., and Lin, J. F. (2018). “Predictive analysis of landslide susceptibility under climate change conditions-A study on the Ai-Liao watershed in sothern Taiwan.” Journal of GeoEngineering, vol. 13, no. 1, pp. 13–27. DOI: 10.6310/jog.201803_13(1).2.

    Google Scholar 

  • Sloan, S. W. (2013). “Geotechnical stability analysis.” Geotechnique, vol. 63, no. 7, pp. 531–572. DOI: 10.1680/geot.12.RL.001.

    Article  Google Scholar 

  • Sonmez, H., Gokceoglu, C., and Ulusay, R. (2004). “Indirect determination of the modulus of deformation of rock masses based on the GSI system.” International Journal of Rock Mechanics and Mining Sciences, vol. 41, no. 5, pp. 849–857. DOI: 10.1016/j.ijrmms.2003.01.006.

    Article  Google Scholar 

  • Sonmez, H. and Ulusay, R. (1999). “Modifications to the Geological Strength Index (GSI) and their applicability to stability of slopes.” International Journal of Rock Mechanics and Mining Sciences, vol. 36, no. 6, pp. 743–760. DOI: 10.1016/S0148-9062(99)00043-1.

    Article  Google Scholar 

  • Taheri, A. and Tani, K. (2010). “Assessment of the stability of rock slopes by the slope stability rating classification system.” Rock Mechanics and Rock Engineering, vol. 43, no. 3, pp. 321–333. DOI: 10.1007/s00603-009-0050-4.

    Article  Google Scholar 

  • Taylor, D. W. (1937). “Stability of earth slopes.” Boston Society of Civil Engineers.

    Google Scholar 

  • Terzaghi, K. (1950). “Mechanics of landslides' in applications of geological engineering practice.” Bull. Geol. Soc. Amer, Vol. 40, p. 83.

    Google Scholar 

  • Tsiambaos, G. and Saroglou, H. (2010). “Excavatability assessment of rock masses using the Geological Strength Index (GSI).” Bulletin of Engineering Geology and the Environment, vol. 69, no. 1, pp. 13–27. DOI: 10.1007/s10064-009-0235-9.

    Article  Google Scholar 

  • Xia, C. C., Zhou, S. W., Zhang, P. Y., Hu, Y. S., and Zhou, Y. (2015). “Strength criterion for rocks subjected to cyclic stress and temperature variations.” Journal of Geophysics and Engineering, Vol. 12, No. 5, p. 753, DOI: 10.1088/1742-2132/12/5/753.

    Google Scholar 

  • Xu, J., Pan, Q. Yang, X. L., and Li, W. (2018). “Stability charts for rock slopes subjected to water drawdown based on the modified nonlinear Hoek-Brown failure criterion.” International Journal of Geomechanics, Vol. 18, No. 1, 04017133, DOI: 10.1061/(ASCE)GM.1943-5622.0001039.

    Google Scholar 

  • Yu, H., Salgado, R., Sloan, S., and Kim, J. (1998). “Limit analysis versus limit equilibrium for slope stability.” Journal of Geotechnical and Geoenvironmental Engineering, vol. 124, no. 1, pp. 1–11. DOI: 10.1061/(ASCE)1090-0241(1998)124:1(1).

    Article  Google Scholar 

  • Zhang, Y., Zhang, J., Chen, G., Zheng, L., and Li, Y. (2015). “Effects of vertical seismic force on initiation of the Daguangbao landslide induced by the 2008 Wenchuan earthquake.” Soil dynamics and earthquake engineering, vol. 73, pp. 91–102. DOI: 10.1016/j.soildyn.2014.06.036.

    Article  Google Scholar 

  • Zhou, S. W., Xia, C. C., Hu, Y. S., Zhou, Y., and Zhang, P. Y. (2015). “Damage modeling of basaltic rock subjected to cyclic temperature and uniaxial stress.” International Journal of Rock Mechanics and Mining Sciences, vol. 77, no. 7, pp. 163–173. DOI: 10.1016/j.ijrmms.2015.03.038.

    Article  Google Scholar 

  • Zhou, S. W., Xia, C. C., Zhao, H. B., Mei, S. H., and Zhou, Y. (2017), “Statistical damage constitutive model for rocks subjected to cyclic stress and cyclic temperature.” Acta Geophysica, vol. 65, no. 5, pp. 893–906. DOI: 10.1007/s11600-017-0073-2.

    Article  Google Scholar 

  • Zhou, S. W., Xia, C. C., and Zhou, Y. (2018). “A theoretical approach to quantify the effect of random cracks on rock deformation in uniaxial compression.” Journal of Geophysics and Engineering, vol. 15, no. 3, pp. 627, DOI: 10.1088/1742-2140/aaa1ad.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to An-Jui Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, AJ., Qian, Z., Jiang, JC. et al. Seismic Slope Stability Evaluation Considering Rock Mass Disturbance Varying in the Slope. KSCE J Civ Eng 23, 1043–1054 (2019). https://doi.org/10.1007/s12205-019-0963-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-019-0963-8

Keywords

Navigation