Skip to main content
Log in

On The Stiffness Prediction of GFRP Pipes Subjected to Transverse Loading

  • Structural Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

The main objective of this study is to predict the stiffness of GFRP pipes subjected to compressive transverse loading. An experimental study is performed to measure the stiffness of a composite pipe with a core layer of sand/resin composites. Then, a simple analytical modeling constructed on the basis of solid mechanics is used to estimate the stiffness of the investigated pipe as the back-of-envelope technique widely used by industrial sectors. The simulation of stiffness test is conducted using finite element modeling wherein both large deformation and inelastic behavior of material is taken into account as the sources of nonlinearity. The results reveal that a very good estimation with high level of accuracy can be reached by proper selection of the element and performing nonlinear analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ASTM D 3171–06 (2006). Standard test methods for constituent contents of composite materials, American Society for Testing and Materials.

  • ASTM D2412-02 (2002). Standard Test Method for Determination of External Loading Characteristics of Plastic Pipe by Parallel-Plate Loading, American Society for Testing and Materials.

  • ASTM D2517-00 (2000). Standard Specification for Reinforced Epoxy Resin Gas Pressure Pipe and Fittings, American Society for Testing and Materials.

  • ASTM D3517-06 (2006). Standard Specification for “Fiberglass” (Glass-Fiber-Reinforced Thermosetting-Resin) Pressure Pipe, American Society for Testing and Materials.

  • AWWA manual M45 (2005). Fiberglass pipe design (second edition), Denver, American Water Works Association.

  • Bakaiyan, H., Hosseini, H., and Ameri, E. (2009). “Analysis of multilayered filament-wound composite pipes under combined internal pressure and thermomechanical loading with thermal variations.” Composite Structures, Vol. 88, No. 4, pp. 532–541, DOI: 10.1016/j.compstruct.2008.05.017.

    Article  Google Scholar 

  • Bouhafs, M., Sereir, Z., and Chateauneuf, A. (2012). “Probabilistic analysis of the mechanical response of thick composite pipes under internal pressure.” International Journal of Pressure Vessels and Piping, Vol. 95, pp. 7–15, DOI: 10.1016/j.ijpvp.2012.05.001.

    Article  Google Scholar 

  • Curtis, J., Hinton, M. J., Li, S., Reid, S. R., and Soden, P. D. (2000). “Damage, deformation and residual burst strength of filamentwound composite tubes subjected to impact or quasi-static indentation.” Composites: Part B, Vol. 31, No. 5, pp. 419–433, DOI: 10.1016/S1359-8368(00)00014-7.

    Article  Google Scholar 

  • Deniz, M. E., Karakuzu, R., and Sari, M. (2012). “On the residual compressive strength of the glass–epoxy tubes subjected to transverse impact loading.” Journal of Composite Materials, Vol. 46, No. 6, pp. 737–745, DOI: 10.1177/0021998311410483.

    Article  Google Scholar 

  • Deniz, M. E., Ozen, M., Ozdemir, O., Karakuzu, R., and Icten, B. M. (2013). “Environmental effect on fatigue life of glass–epoxy composite pipes subjected to impact loading.” Composites: Part B, Vol. 44, No. 1, pp. 304–312, DOI: 10.1016/j.compositesb.2012.05.001.

    Article  Google Scholar 

  • Faria, H. (2005). Failure analysis of GRP pipes under compressive ring loads, M.Sc. Thesis, Faculdade de Engenharia da Universidade do Porto.

    Google Scholar 

  • Farshad, M. (2004). “Strain corrosion of glass-fiber reinforced plastic pipes.” Polymer Testing, Vol. 23, No. 5, pp. 517–521, DOI: 10.1016/j.polymertesting.2003.12.003.

    Article  Google Scholar 

  • Farshad, M. and Necola, A. (2004). “Effect of aqueous environment on the long-term behavior of glass fiber-reinforced plastic pipes.” Polymer Testing, Vol. 23, No. 2, pp. 163–167, DOI: 10.1016/S0142-9418(03)00075-8.

    Article  Google Scholar 

  • Gibson, R. F. (2007). Principles of composite material mechanics (2nd ed.), CRC Press.

    Google Scholar 

  • Gning, P. B., Tarfaoui, M., Collombet, F., Riou, L., and Davies, P. (2005). “Damage development in thick composite tubes under impact loading and influence on implosion pressure: Experimental observations.” Composites: Part B, Vol. 36, No. 4, pp. 306–318, DOI: 10.1016/j.compositesb.2004.11.004.

    Article  Google Scholar 

  • Guedes, R. M. (2006). “Stress analysis of transverse loading for laminated cylindrical composite pipes: An approximated 2-D elasticity solution.” Composites Science and Technology, Vol. 66, Nos. 3–4, pp. 427–434, DOI: 10.1016/j.compscitech.2005.07.018.

    Article  Google Scholar 

  • Guedes, R. M. (2009). “Stress-strain analysis of a cylindrical pipe subjected to a transverse load and large deflection.” Composites Structures, Vol. 88, No. 2, pp. 188–194, DOI: 10.1016/j.compstruct.2008.03.031.

    Article  Google Scholar 

  • Hawa, A., Abdul Majid, M. S., Afendi, M., Marzuki, H. F. A., Amin, N. A. M., Mat, F., and Gibson, A. G. (2016). “Burst strength and impact behaviour of hydrothermally aged glass fibre/epoxy composite pipes.” Materials and Design, Vol. 89, pp. 455–464, DOI: 10.1016/j.matdes.2015.09.082.

    Article  Google Scholar 

  • Kara, M., Uyaner, M., Avci, A., and Akdemir, A. (2014). “Effect of nonpenetrating impact damages of pre-stressed GRP tubes at low velocities on the burst strength.” Composites Part B, Vol. 60, pp. 507–514, DOI: 10.1016/j.compositesb.2014.01.003.

    Article  Google Scholar 

  • Martins, L. A. L., Bastian, F. L., and Netto, T. A. (2012). “Structural and functional failure pressure of filament wound composite tubes.” Materials and Design, Vol. 36, pp. 779–787, DOI: 10.1016/j.matdes.2011.11.029.

    Article  Google Scholar 

  • Meijer, G. and Ellyin, F. (2009). “A failure envelope for ±60º filament wound glass fiber reinforced epoxy tubular.” Composites Part A, Vol. 39, No. 3, pp. 555–564, DOI: 10.1016/j.compositesa.2007.11.002.

    Article  Google Scholar 

  • Melo, J. D. D., Neto, F. L., Barros, G. A., and Masquita, F. N. A. (2010). “Mechanical behavior of GRP pressure pipes with addition of quarts sand filler.” Journal of Composite Materials, Vol. 45, No. 6, pp. 717–726, DOI: 10.1177/0021998310385593.

    Article  Google Scholar 

  • Mertiny, P. (2012). “Leakage failure in fibre-reinforced polymer composite tubular vessels at elevated temperature.” Polymer Testing, Vol. 31, No. 1, pp. 25–30, DOI: 10.1016/j.polymertesting.2011.09.003.

    Article  Google Scholar 

  • Mital, S. K. (1996). Micromechanics for particulate reinforced composites, NASA technical memorandum 107276.

    Google Scholar 

  • Rafiee, R. (2016). “On the mechanical performance of glass-fibrereinforced thermosetting-resin pipes: A review.” Composite Structures, Vol. 143, pp. 151–164, DOI: 10.1016/j.compstruct.2016.02.037.

    Article  Google Scholar 

  • Rafiee, R. (2017). “Stochastic fatigue analysis of glass fiber reinforced polymer pipes.” Composite Structures, Vol. 167, pp. 96–102, DOI: 10.1016/j.compstruct.2017.01.068.

    Article  Google Scholar 

  • Rafiee, R. and Amini, A. (2015). “Modeling and experimental evaluation of functional failure pressures in glass fiber reinforced polyester pipes.” Computational Materials Science, Vol. 96, Part B, pp. 579–588, DOI: 10.1016/j.commatsci.2014.03.036.

    Article  Google Scholar 

  • Rafiee, R. and Elasmi, F. (2017). “Theoretical modeling of fatigue phenomenon in composites pipes.” Composite Structures, Vol. 161, pp. 256–263, DOI: 10.1016/j.compstruct.2016.11.054.

    Article  Google Scholar 

  • Rafiee, R. and Mazhari, B. (2015). “Modeling creep in polymeric composites: Developing a general integrated procedure.” International Journal of Mechanical Science, Vol. 99, pp. 112–120, DOI: 10.1016/j.ijmecsci.2015.05.011.

    Article  Google Scholar 

  • Rafiee, R. and Mazhari, B. (2016). “Evaluating the longterm performance of Glass Fiber Reinforced Plastic pipes subjected to internal pressure.” Construction and Building Materials, Vol. 122, pp. 694–701, DOI: 10.1016/j.conbuildmat.2016.06.103.

    Article  Google Scholar 

  • Rafiee, R. and Reshadi, F. (2014). “Simulation of functional failure in GRP mortar pipes.” Composite Structures, Vol. 113, pp. 155–163, DOI: 10.1016/j.compstruct.2014.03.024.

    Article  Google Scholar 

  • Rafiee, R., Fakoor, M., and Hesamsadat, H. (2015). “The influence of production inconsistencies on the functional failure of GRP pipes.” Steel and Composite Structures, Vol. 19, No. 6, pp. 1369–1379, DOI: 10.12989/scs.2015.19.6.1369.

    Article  Google Scholar 

  • Rafiee, R., Reshadi, F., and Eidi, S. (2015). “Stochastic analysis of functional failure pressure in glass fiber reinforced polyester pipes.” Materials and Design, Vol. 67, pp. 422–427, DOI: 10.1016/j.matdes.2014.12.003.

    Article  Google Scholar 

  • Samanci, A., Tarakcioglu, N., and Akdemir, A. (2011). “Fatigue failure analysis of surface-cracked (±45º)3 filament-wound GRP pipes under internal pressure.” Journal of Composite Materials, Vol. 46, No. 9, pp. 1041–1050, DOI: 10.1177/0021998311414945.

    Article  Google Scholar 

  • Sari, M., Karakuzu, R., Deniz, M. E., and Icten, B. M. (2011). “Residual failure pressures and fatigue life of filament-wound composite pipes subjected to lateral impact.” Journal of Composite Materials, Vol. 46, No. 15, pp. 1787–1794, DOI: 10.1177/0021998311425717.

    Article  Google Scholar 

  • Tarakcioglu, N., Samanci, A., Arikan, H., and Akdemir, A. (2007). “The fatigue behavior of (±55°)3 filament wound GRP pipes with a surface crack under internal pressure.” Composite Structures, Vol. 80, No. 2, pp. 207–211, DOI: 10.1016/j.compstruct.2006.05.015.

    Article  Google Scholar 

  • Tarfaoui, M., Gning, P. B., Davies, P., and Collombet, F. (2007). “Scale and size effects on dynamic response and damage of glass/epoxy tubular structures.” Journal of Composite Materials, Vol. 41, pp. 547–558, DOI: 10.1177/0021998306065287.

    Article  Google Scholar 

  • Tsai, S. W., Hoa, S. V., and Gay, D. (2003). Composite materials, design and applications, CRC Press.

    Google Scholar 

  • Tse, P. C., Reid, S. R., and Ng, S. P. (2001). “Spring constants of filament-wound composite circular rings. Proceedings of the Institution of Mechanical Engineers.” Part C: Journal of Mechanical Engineering Science, Vol. 215, No. 2, pp. 211–226, DOI: 10.1243/0954406011520634.

    Google Scholar 

  • Watkins, R. K. and Anderson, L. R. (2000). Structural mechanics of buried pipes, CRC Press LLC.

    Google Scholar 

  • Xia, M., Takayanagi, H., and Kemmochi, K. (2001a). “Analysis of multi-layered filament wound composite pipes under internal pressure.” Composite Structures, Vol. 53, pp. 483–491, DOI: 10.1016/S0263-8223(01)00061-7.

    Article  Google Scholar 

  • Xia, M., Takayanagi, H., and Kemmochi, K. (2001b). “Analysis of filament-wound fiber reinforced sandwich pipe under combined internal pressure and thermomechanical loading.” Composite Structure, Vol. 51, pp. 273–83, DOI: 10.1016/S0263-8223(00)00137-9.

    Article  Google Scholar 

  • Xia, M., Takayanagi, H., and Kemmochi, K. (2001c). “Analysis of transverse loading for laminated cylindrical pipes.” Composite Structures, Vol. 53, No. 3, pp. 279–285, DOI: 10.1016/S0263-8223 (01)00011-3.

    Article  Google Scholar 

  • Xing, J., Geng, P., and Yang, T. (2015). “Stress and deformation of multiple winding angle hybrid filament-wound thick cylinder under axial loading and internal and external pressure.” Composite Structures, Vol. 131, pp. 868–877, DOI: 10.1016/j.compstruct.2015.05.036.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roham Rafiee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafiee, R., Habibagahi, M.R. On The Stiffness Prediction of GFRP Pipes Subjected to Transverse Loading. KSCE J Civ Eng 22, 4564–4572 (2018). https://doi.org/10.1007/s12205-018-2003-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-018-2003-5

Keywords

Navigation