Skip to main content
Log in

Field Test Results of Palm Oil Clinker Concrete Pile and Foamed Concrete Pile for Floating Foundation in Soft Soil

  • Geotechnical Engineering
  • Technical Note
  • Published:
KSCE Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

The typical properties of Lightweight Concrete Pile (LCP) are low density, low strength and high porosity. Such inherent properties made use of LCP for deep foundation are still rare. In spite of Normal Concrete Pile (NCP) has been widely used in civil engineering industry, the use of LCP such as palm oil clinker concrete pile (p-LCP) and foamed concrete pile (f-LCP) for floating foundation must be verified. The purpose of this study was to perform the static and dynamic load tests for assessing the performance of p-LCP and f-LCP and that of NCP as reference. The physical characteristics of either p-LCP or f-LCP have higher average values of compressive stress and driving resistance comparing with NCP. Features of good performance for p-LCP and f-LCP can be used for deep foundation of particular structures in soft soil and were verified to contribute to material and structural perspectives for the future of geotechnical engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adib, M. E. (2001). “Load tests on prestressed precast concrete and timber piles.” J. Geotech. Geoenviron. Eng., ASCE., vol. 127, no. 12, pp. 1043–1050, DOI: 10.1061/(ASCE)1090-0241(2001)127:12(1043).

    Article  Google Scholar 

  • Agus, S., Ismail, B., and Amirkhan, S. (2010). “The performance evaluation of lightweight concrete piles on UTHM’s soft soil under static and dynamic loading tests.” Int. J. Integr. Eng., vol. 2, no. 2, pp. 53–65.

    Google Scholar 

  • American Society of Testing and Material (ASTM). (1994). Standard test method for piles under static axial compressive load, ASTM D1143-81, pp. 768–778.

    Google Scholar 

  • Ampera, B. and Aydogmus, T. (2005). “Skin friction between peat and silt soils with construction materials.” Electronic J. Geotach. Eng., Vol. 10

  • Bundle D. Baldinelli, M. J. V. (1999). Analysis of the axial response of flexible piles to rapid loading, Master Thesis, The University of Western Ontario London, Ontario. Canada

    Google Scholar 

  • Barends, F. B. J. (1992). Preface: Application of stress-wave theory on piles, In: Proceedings of 3rd International Conference. The Hague.

    Google Scholar 

  • Bhatti, A. Q., Kishi, N., and Mikami, H. (2011). “An applicability of dynamic response analysis of shear-failure type RS beams with lightweight aggregate concrete under falling-weight impact loading.” Mater. Struct., vol. 44, no. 1, pp. 221–231, DOI: 10.1617/s11527-010-9621-9.

    Article  Google Scholar 

  • Brady, K. C., Watts, G. R. A., and Jones, M. R. (2001). Application Guide AG39: Specification for foamed concrete, Highway Agency and Transport Research Laboratory, Workingham, Berks, UK.

    Google Scholar 

  • Braja, M. D. (1995). Principles of Foundation Engineering, PWS Publishing Company, N.Y.

    Google Scholar 

  • Bruno, D. and Randolph, M.F. (1999). “Dynamic and static load testing of model piles driven into dense sand.” J. Geotech. Geoenviron. Eng., ASCE., vol. 125, no. 11, pp. 988–998, DOI: 10.1061/(ASCE) 1090-0241(1999)125:11(988)

    Article  Google Scholar 

  • Chow, H. S. W. (2007). Analysis of piled-raft foundations with piles of different lengths and diameters, PhD Thesis, The University of Sydney.

    Google Scholar 

  • Chu, H.-c., Lyu, X.-j., Zhang, Y., and Wang, Z.-q. (2016). “Status and prospects of research on reducing the water absorption of formed concrete.” Bull. Chinese Ceram. Soc., vol. 35, no. 9, pp. 2852–2859.

    Google Scholar 

  • Davisson, M. T. (1972). High capacity piles, Proc., Lecture Series on Innovation in Foundation Construction, American Society of Civil Engineers, ASCE, New York, pp. 81–112.

    Google Scholar 

  • Dehghanbanadaki, A., Ahmad, K., and Ali, N. (2016). “Experimental investigations on ultimate bearing capacity of peat stabilized by a group of soil–cement column: A comparative study.” Acta Geotechnica, vol. 11, no. 2, pp. 295–307, DOI: 10.1007/s11440-014-0328-x.

    Article  Google Scholar 

  • Domagala, L. (2015). “The effect of lightweight aggregate water absorption on the reduction of water-cement ratio in fresh concrete.” Procedia Eng., vol. 108, pp. 206–213, DOI: 10.1016/j.proeng.2015.06.139.

    Article  Google Scholar 

  • El-Garhy, B., Abdel Galil, A., Youssef, A.-F., and Abo Raia, M. (2013). “Behavior of raft on settlement reducing piles: Experimental model study.” J. Rock Mech. Geotech. Eng., vol. 5, no. 5, pp. 389–399, DOI: 10.1016/j.jrmge.2013.07.005.

    Article  Google Scholar 

  • Elshafie, S., Boulbibane, M., and Whittleston, G. (2016).“ Influence of mineral admixtures on the mechanical properties of fresh and hardened concrete.” Constr. Sci., vol. 19, no. 1, pp. 4–14, DOI: 10.1515/cons-2016-0005.

    Article  Google Scholar 

  • Gerwick, B. C. and Brauner, H. A. (1978). “Design of high performance prestressed concrete piles for dynamic loading.” Behavior of deep foundations, ASTM, West Conshohocken, pp. 323–334.

    Google Scholar 

  • Goble, G. G. and Likins, G. E. (1996). On the applications of PDA dynamic pile testing, In: Proceeding of the 5th International Conference on The Application of Stress-wave Theory on Piles, Orlando, pp. 263–273.

    Google Scholar 

  • Goble, G. G., Rausche, F., and Moses, F. (1970). Dynamic studies on the bearing capacity of piles: Phase III. Report No. 48, Division of Solid Mechanics, Structures and Mechanical Design, Case Western Reserve University, Cleveland, Ohio.

    Google Scholar 

  • Graham, J. and Houlsby, G. T. (1983). “Anisotropic elasticity of a natural clay.” Geotechnique, vol. 33, no. 2, pp. 165–180, DOI: 10.1680/geot.1983.33.2.165.

    Article  Google Scholar 

  • Guan, W. (2011). “Effect of water reducing agent on the properties of foam concrete.” New Build. Mater., vol. 5, pp. 46–49.

    Google Scholar 

  • Holeyman, A., Vanden Berghe, J. F., and Charue, N. (2002). Vibratory Pile Driving and Deep Soil Compaction, Taylor and Francis. The Netherlands.

    Google Scholar 

  • Idorn, G. and Roy, D. (1984). “Factors affecting the durability of concrete and the benefits of using blast-furnace slag cement.” Cem. Concr. Aggr., Vol. 6, No. 1, 1984, pp. 3–10, DOI: 10.1520/CCA10347J.

    Article  Google Scholar 

  • Ismael, N. F. (1999). “Analysis of load tests on piles driven through calcareous desert sands.” J. Geotech. Geoenviron. Eng., vol. 125, no. 10, pp. 905–908, DOI: 10.1061/(ASCE)1090-0241(1999)125:10(905).

    Article  Google Scholar 

  • Kenneth, N. D., Korfiatis, G., and Ezeldin, S. (1998). Materials for civil and highway engineers, The 4th Ed., Upper Saddle River, Pearson Education

    Google Scholar 

  • POD, N.J. Kim, Y. U., Park, J., Chun, Y. W., and Zhang, G. M. (2013). “Evaluation and prediction of physical properties of pressure grouting using laboratory testing and elastic wave velocity.” KSCE J. Civ. Eng., vol. 17, no. 2, pp. 364–367, DOI: 10.1007/s12205-013-1814-7.

    Article  Google Scholar 

  • Ko, H.-Y. and Davidson, L. W. (1973). “Bearing capacity of footings in plane strain.” J. Soil Mech. Found. Div., vol. 99, no. 1, pp. 1–23.

    Google Scholar 

  • Lachemi, M., Bae, S., Hossain, K. M. A., and Sahmaran, M. (2009). “Steel-concrete strength of lightweight self-consolidating concrete.” Mater. Struct., vol. 42, no. 7, pp. 1015–1023, DOI: 10.1617/s11527-008-9440-4.

    Article  Google Scholar 

  • Laidin, H. (2004). Determination of peak ground acceleration using seismic refraction and rotary wash boring method on RECESS soft soil, M.Sc. Thesis, Department of Geotechnics and Transportation Engineering, Universiti Tun Hussein Onn Malaysia, Johor.

    Google Scholar 

  • Liang, F., Yu, F., and Han, J. (2013). “A simplified analytical method for response of an axially loaded pile group subjected to lateral soil movement.” KSCE J. Civ. Eng., vol. 17, no. 2, pp. 368–376, DOI: 10.1007/s12205-013-1816-5.

    Article  Google Scholar 

  • Lim, S. K., Tan, C. S., Zhao, X., and Ling, T. C. (2015). “Strength and toughness of lightweight foamed concrete with different sand grading.” KSCE J. Civ. Eng., vol. 19, no. 7, pp. 2191–2197, DOI: 10.1007/s12205-014-0097-y.

    Article  Google Scholar 

  • Loria, A. F. R. and Laloui, L. (2016). “The interaction factor method for energy pile groups.” Comput. Geotech., vol. 80, pp. 121–137, DOI: 10.1016/j.compgeo.2016.07.002.

    Article  Google Scholar 

  • Mouli, M and Khelafi, H. (2007). “Properties of lightweight concrete made with crushed natural pozzolana as coarse aggregate.” Ukio Technologinis ir Ekonominis Vystymas, vol. 13, no. 4, pp. 259–265, DOI: 10.1080/13928619.2007.9637810.

    Google Scholar 

  • Muthusamy, K. and Zamri, N. A. (2016). “Mechanical properties of oil palm shell lightweight aggregate concrete containing palm oil fuel ash as partial cement replacement.” KSCE J. Civ. Eng., vol. 20, no. 4, pp. 1473–1481, DOI: 10.1007/s12205-015-1104-7.

    Article  Google Scholar 

  • Ng, S. C., Low, K. S., and Tioh, N. H. (2012). “Potential use of clayey soil in aerated lightweight concrete.” KSCE J. Civ. Eng., vol. 16, no. 5, pp. 809–815, DOI: 10.1007/s12205-012-1380-4.

    Article  Google Scholar 

  • Pak, A., Seyfi, S., and Ghassemi, A. (2014). “Numerical investigation into the effects of geometrical and loading parameters on lateral spreading behavior of liquefied layer.” Acta Geotechnica, vol. 9, no. 6, pp. 1059–1071, DOI: 10.1007/s11440-013-0248-1.

    Article  Google Scholar 

  • Prakash, S. and Sharma, H. D. (1990). Pile foundations in engineering practice, John Wiley & Sons, N.Y.

    Google Scholar 

  • Rausche, F., Likins, G. E., Goble, G. G., and Miner, R. (1985). The Performance of pile driving systems, Final Report in 4 Volumes, FHWA Office of Research and Development, Washington, D.C.

    Google Scholar 

  • Rose, A. F. (2012). Behaviour and efficiency of perimeter pile groups, PhD Thesis, City University London.

    Google Scholar 

  • Selby, A. R. (1999). “Tunnellingg in soils-gound movements, and damage to building in Workington, UK.” Geotech. Geol. Eng., vol. 17, Nos. 3–4, pp. 351–371, DOI: 10.1023/A:1008985814841.

    Article  Google Scholar 

  • Shakir, R. R. and Zhu, J. (2009). “Nonlinear elastic model for compacted clay concrete interface.” Front. Archi. Civ. Eng. China, vol. 3, no. 2, pp. 187–194, DOI: 10.1007/s11709-009-0033-2.

    Article  Google Scholar 

  • Shamsai, A., Peroti, S., Rahmani, K., and Rahemi, L. (2012). “Effect of water-cement ratio on abrasive strength, porosity and permeability of nano-silica concrete.” World Appl. Sci. J., vol. 17, no. 8, pp. 929–933.

    Google Scholar 

  • Sheil, B. B. and McCabe, B. A. (2014). “A finite element-based approach for predictions of rigid pile group stiffness efficiency in clays.” Acta Geotechnica, vol. 9, no. 3, pp. 469–484, DOI: 10.1007/s11440-013-0240-9.

    Article  Google Scholar 

  • Shi, W., Miao, L., Luo, J., Wang, J., and Chen, Y. (2016). “Durability of modified expanded polystyrene concrete after dynamic cyclic loading.” Shock and Vibration, Vol. 2016, Article ID 2391476, DOI: 10.1155/2016/2391476.

  • Soon, N. W., Lee, L. M., Khun, T. C., and Ling, H. S. (2013). “Improvements in engineering properties of soils through microbial-induced calcite precipitation.” KSCE J. Civ. Eng., vol. 17, no. 4, pp. 718–728, DOI: 10.1007/s12205-013-0149-8.

    Article  Google Scholar 

  • Wu, W. B., Wang, K. H., Zhang, Z. Q., and Chin, J. L. (2013). “Soil-pile interaction in the pile vertical vibration considering true threedimentional wave effect of soil.” Int. J. Numer. Anal. Meth. Geomech., vol. 37, no. 17, pp. 2860–2876, DOI: 10.1002/nag.2164.

    Article  Google Scholar 

  • Yan, S., Li, J., Sun, L., and Sun, G. (2015). “Difficulties and measures of driving super long piles in Bohai Gulf.” Theor. Appl. Mech. Lett., vol. 5, no. 2, pp. 69–73, DOI: 10.1016/j.taml.2015.02.006.

    Article  Google Scholar 

  • Yang, Y. and Chen, B. (2016). “Potential use of soil in lightweight foamed concrete.” KSCE J. Civ. Eng., vol. 20, no. 6, pp. 2420–2427, DOI: 10.1007/s12205-016-0140-2.

    Article  Google Scholar 

  • Yetginer, A. G., White, D. J., and Bolton, M. D. (2006). “Field measurements of the stiffness of jacked piles and pile groups.” Geotechnique, vol. 56, no. 5, pp. 349–354, DOI: 10.1680/geot.2006.56.5.349.

    Article  Google Scholar 

  • Yu, H., Al-Hussein, M., Nasseri, R., and Cheng, R. J. (2008). “Sustainable precast concrete foundation system for residential construction.” Can. J. Civ. Eng., vol. 35, no. 2, pp. 190–199, DOI: 10.1139/L07-112.

    Article  Google Scholar 

  • Zhang, S. P. and Zong, L. (2014). “Evaluation of relationship between water absorption and durability of concrete materials.” Adv. Mater. Sci. Eng., Vol. 2014. Article ID 650373, DOI: 10.1155/2014/650373.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Ali Fulazzaky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sulaeman, A., Fulazzaky, M.A., Haroen, M. et al. Field Test Results of Palm Oil Clinker Concrete Pile and Foamed Concrete Pile for Floating Foundation in Soft Soil. KSCE J Civ Eng 22, 2232–2240 (2018). https://doi.org/10.1007/s12205-017-1729-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-017-1729-9

Keywords

Navigation