Skip to main content
Log in

Effects of chemical admixtures and curing conditions on some properties of alkali-activated cementless slag mixtures

  • Structural Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

This paper reports the results of an investigation on the influences of admixtures and curing conditions on some properties of Alkali-Activated Slag (AAS) mixtures with no cement. In the study, Shrinkage-Reducing (SRA) and superplasticizing and setretarding (WRRe) admixtures were used. For the slag activation, sodium metasilicate was used at two sodium concentrations, 4% and 6% by mass of slag. Setting time, flow loss of fresh mixtures, and shrinkage strain, carbonation, flexural and compressive strength of hardened mixtures were measured. The test results showed that the admixtures generally had no impact on the setting times of AAS pastes. WRRe increased the flow rate of AAS mortars while SRA partially affected the flow values of AAS mortars. WRRe and SRA did not produce an important difference on the carbonation depths of AAS mortars. However, WRRe and especially SRA admixtures decreased the shrinkage values of AAS mortars. Additionally, curing conditions had a significant effect on the mechanical behavior in the hardened state of AAS mortars compared to Normal Portland Cement (NPC) mortars, and the strength development of AAS mortars at early ages was very fast in comparison with NPC mortars when subjected to elevated temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Saleh S. A. and Al-Zaid R. Z. (2006). “Effects of drying conditions, admixtures and specimen size on shrinkage strains.” Cement and Concrete Research Vol. 36, No. 10, pp. 1985–1991, DOI: 10.1016/j.cemconres.2004.11.005.

    Article  Google Scholar 

  • ASTM C596 (2005). Standard test method for drying shrinkage of mortar containing hydraulic cement, ASTM International, West Conshohocken.

    Google Scholar 

  • Atiş C. D., Bilim C., Çelik, Ö., and Karahan O. (2009). “Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar.” Construction and Building Materials Vol. 23, No. 1, pp. 548–555, DOI: 10.1016/j.conbuildmat.2007.10.011.

    Article  Google Scholar 

  • Aydın, S. (2008). “Development of a high-temperature-resistant mortar by using slag and pumice.” Fire Safety Journal Vol. 43, pp. 610–617, DOI: 10.1016/j.firesaf.2008.02.001.

    Article  Google Scholar 

  • Aydın, S. and Baradan B. (2012). “Mechanical and microstructural properties of heat cured alkali-activated slag mortars.” Materials and Design Vol. 35, pp. 374–383, DOI: 10.1016/j.matdes.2011.10.005.

    Article  Google Scholar 

  • Bakharev T., Sanjayan J. G., and Cheng Y. (1999a). “Alkali activation of Australian slag cements.” Cement and Concrete Research Vol. 29, No. 1, pp. 113–120, DOI: 10.1016/S0008-8846(98)00170-7.

    Article  Google Scholar 

  • Bakharev T., Sanjayan J. G., and Cheng Y. B. (1999b). “Effect of elevated curing on properties of alkali-activated slag concrete.” Cement and Concrete Research Vol. 29, No. 10, pp. 1619–1625, DOI: 10.1016/S0008-8846(99)00143-X.

    Article  Google Scholar 

  • Bakharev T., Sanjayan J. G., and Cheng Y. B. (2000). “Effect of admixtures on properties of alkali-activated slag concrete.” Cement and Concrete Research Vol. 30, No. 9, pp. 1367–1374, DOI: 10.1016/S0008-8846(00)00349-5.

    Article  Google Scholar 

  • Bakharev T., Sanjayan J. G., and Cheng Y. B. (2001). “Resistance of alkali-activated slag concrete to carbonation.” Cement and Concrete Research Vol. 31, No. 9, pp. 1277–1283, DOI: 10.1016/S0008-8846(01)00574-9.

    Article  Google Scholar 

  • Bakharev T., Sanjayan J. G., and Cheng Y. B. (2003). “Resistance of alkali-activated slag concrete to acid attack.” Cement and Concrete Research Vol. 33, No. 10, pp. 1607–1611, DOI: 10.1016/S0008-8846(03)00125-X.

    Article  Google Scholar 

  • Bernal S. A., Gutiérrez R. M. D., Pedraza A. L., Provis J. L., Rodriguez E. D., and Delvasto S. (2011). “Effect of binder content on the performance of alkali-activated slag concretes.” Cement and Concrete Research Vol. 41, No. 1, pp. 1–8, DOI: 10.1016/j.cemconres.2010.08.017.

    Article  Google Scholar 

  • Bilim C. and Atiş, C. D. (2012). “Alkali activation of mortars containing different replacement levels of ground granulated blast furnace slag.” Construction and Building Materials Vol. 28, No. 1, pp. 708–712, DOI: 10.1016/j.conbuildmat.2011.10.018.

    Article  Google Scholar 

  • Bilim C., Karahan O., Atiş, C. D., and İlkentapar, S. (2013). “Influence of admixtures on the properties of alkali-activated slag mortars subjected to different curing conditions.” Materials and Design Vol. 44, pp. 540–547, DOI: 10.1016/j.matdes.2012.08.049

    Article  Google Scholar 

  • Caijun S. (1999). “Strength, pore structure and permeability of alkaliactivated slag mortars.” Cement and Concrete Research Vol. 26, No. 12, pp. 1789–1799, DOI: 10.1016/S0008-8846(96)00174-3.

    Google Scholar 

  • Caijun S. and Yinyu L. (1989). “Investigation on some factors affecting the characteristics of alkali-phosphorus slag cement.” Cement and Concrete Research Vol. 19, No. 4, pp. 527–533, DOI: 10.1016/0008-8846(89)90004-5.

    Article  Google Scholar 

  • Chi M. (2012). “Effects of dosage of alkali-activated solution and curing conditions on the properties and durability of alkali-activated slag concrete.” Construction and Building Materials Vol. 35, pp. 240–245, DOI: 10.1016/j.conbuildmat.2012.04.005.

    Article  Google Scholar 

  • Collins F. and Sanjayan J. G. (1999a). “Workability and mechanical properties of alkali-activated slag concrete.” Cement and Concrete Research Vol. 29, No. 3, pp. 455–458, DOI: 10.1016/S0008-8846(98)00236-1.

    Article  Google Scholar 

  • Collins F. and Sanjayan J. G. (1999b). “Strength and shrinkage properties of alkali-activated slag concrete containing porous coarse aggregate.” Cement and Concrete Research Vol. 29, No. 4, pp. 607–610, DOI: 10.1016/S0008-8846(98)00203-8.

    Article  Google Scholar 

  • Collins F. and Sanjayan J. G. (2000). “Cracking tendency of alkaliactivated slag concrete subjected to restrained shrinkage.” Cement and Concrete Research Vol. 30, No. 5, pp. 791–798, DOI: 10.1016/S0008-8846(00)00243-X.

    Article  Google Scholar 

  • Collins F. and Sanjayan J. G. (2001). “Microcracking and strength development of alkali-activated slag concrete.” Cement and Concrete Composites Vol. 23, Nos. 4–5, pp. 345–352, DOI: 10.1016/S0958-9465(01)00003-8.

    Article  Google Scholar 

  • Douglas E., Bilodeau A., Brandstetr J., and Malhotra V. M. (1991). “Alkali activated ground granulated blast-furnace slag concrete: Preliminary investigation.” Cement and Concrete Research Vol. 21, No. 1, pp. 101–108, DOI: 10.1016/0008-8846(91)90036-H.

    Article  Google Scholar 

  • Douglas E., Bilodeau A., and Malhotra V. M. (1992). “Properties and durability of alkali-activated slag concrete.” ACI Materials Journal Vol. 89, No. 5, pp. 509–516.

    Google Scholar 

  • Erdoğan, T. Y. (2003). Concrete, Metu Press, Ankara (in Turkish).

    Google Scholar 

  • Jiménez A. F., Palomo J. G, and Puertas F. (1999). “Alkali-activated slag mortars: Mechanical strength behaviour.” Cement and Concrete Research Vol. 29, No. 8, pp. 1313–1321, DOI: 10.1016/S0008-8846(99)00154-4.

    Article  Google Scholar 

  • Kjellsen K. O., Detwiller R. J., and Gjorv O. E. (1990). “Backscattered electron imaging of cement pastes hydrated at different temperatures.” Cement and Concrete Research Vol. 20, No. 2, pp. 308–311, DOI: 10.1016/0008-8846(90)90085-C.

    Article  Google Scholar 

  • Kutti T., Berntsson L., and Chandra S. (1992). “Shrinkage of cements with high content of blast-furnace slag.” itIn: Malhotra VM, editor. Proceedings of the fourth international conference on fly ash, silica fume, slag and natural pozzolans in concrete. CANMET/ACI supplementary papers, Istanbul, Turkey, pp. 615–625.

    Google Scholar 

  • Neville A. M. (1981). Properties of concrete, Longman Scientific & Technical, England.

    Google Scholar 

  • Palacios M. and Puertas F. (2005). “Effect of superplasticizer and shrinkage-reducing admixtures on alkali-activated slag pastes and mortars.” Cement and Concrete Research Vol. 35, No. 7, pp. 1358–1367, DOI: 10.1016/j.cemconres.2004.10.014.

    Article  Google Scholar 

  • Palacios M. and Puertas F. (2007). “Effect of shrinkage-reducing admixtures on the properties of alkali-activated slag mortars and pastes.” Cement and Concrete Research Vol. 37, No. 5, pp. 691–702, DOI: 10.1016/j.cemconres.2006.11.021.

    Article  Google Scholar 

  • Puertas F., Gutierrez R. D., Fernández-Jiménez A., Delvasto S., and Maldonado J. (2002). “Alkaline cement mortars. Chemical resistance to sulfate and seawater attack.” Materiales de Construccion Vol. 52, No. 267, pp. 55–71, DOI: 10.3989/mc.2002.v52.i267.326.

    Article  Google Scholar 

  • Puertas F., Palacios M., and Vázquez T. (2006). “Carbonation process of alkali-activated slag mortars.” Journal of Materials Science Vol. 41, No. 5, pp. 3071–3082, DOI: 10.1007/s10853-005-1821-2.

    Article  Google Scholar 

  • Puertas F., Palomo A., Fernández-Jiménez A., Izquierdo J. D., and Granizo M. L. (2003). “Effect of superplasticisers on the behavior and properties of alkaline cements.” Advances in Cement Research Vol. 15, No. 1, pp. 23–28, DOI: 10.1680/adcr.15.1.23.36730.

    Article  Google Scholar 

  • Radjy F. and Richards C. W. (1973). “Effect of curing temperature and heat treatment history on the dynamic mechanical response and the pore structure of hardened cement paste.” Cement and Concrete Research Vol. 3, No. 1, pp. 7–21, DOI: 10.1016/0008-8846(73)90057-4.

    Article  Google Scholar 

  • Taylor H. F. W. (1990). Cement Chemistry, Academic Press, London.

    Google Scholar 

  • TS EN 196-1 (2009). Methods of testing cement-Part 1: Determination of strength, Turkish Standard Institute, Ankara (in Turkish).

    Google Scholar 

  • TS EN 196-3 (2002). Methods of testing cement-Part 3: Determination of setting time and soundness, Turkish Standard Institute, Ankara (in Turkish).

    Google Scholar 

  • TS EN 197-1 (2012). Cement-Part 1: Compositions and conformity criteria for common cements, Turkish Standard Institute, Ankara (in Turkish).

    Google Scholar 

  • TS EN 1015-3 (2000). Methods of test for mortar for masonry-Part 3: Determination of consistence of fresh mortar (by flow table), Turkish Standard Institute, Ankara (in Turkish).

    Google Scholar 

  • TS EN 1015-11 (2000). Methods of test for mortar for masonry-Part 11: Determination of flexural and compressive strength of hardened mortar, Turkish Standard Institute, Ankara (in Turkish).

    Google Scholar 

  • Verbeck G. J. and Helmuth R. H. (1968). “Structures and physical properties of cement paste.” Proceedings of the 5th International Symposium on the Chemistry of Cement, Tokyo, Japan, pp. 1–32.

    Google Scholar 

  • Wang S. D. (2000). “The role of sodium during the hydration of alkaliactivated slag.” Advances in Cement Research Vol. 12, No. 2, pp. 65–69, DOI: 10.1680/adcr.2000.12.2.65.

    Article  Google Scholar 

  • Wang S. D., Pu X. C., Scrivener K. L, and Pratt P. L. (1995). “Alkaliactivated slag cement and concrete: A review of properties and problems.” Advances in Cement Research Vol. 27, No. 7, pp. 93–102.

    Article  Google Scholar 

  • Wang S. D, Scrivener K. L., and Pratt P. L. (1994). “Factors affecting the strength of alkali-activated slag.” Cement and Concrete Research Vol. 24, No. 6, pp. 1033–1043, DOI: 10.1016/0008-8846(94)90026-4.

    Article  Google Scholar 

  • Yang K. H., Song J. K., Ashour A. F., and Lee E. T. (2008). “Properties of cementless mortars activated by sodium silicate.” Construction and Building Materials Vol. 22, No. 9, pp. 1981–1989, DOI: 10.1016/j.conbuildmat.2007.07.003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cahit Bilim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilim, C., Karahan, O., Atiş, C.D. et al. Effects of chemical admixtures and curing conditions on some properties of alkali-activated cementless slag mixtures. KSCE J Civ Eng 19, 733–741 (2015). https://doi.org/10.1007/s12205-015-0629-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-015-0629-0

Keywords

Navigation