Skip to main content
Log in

Kinetics of nitrate adsorption and reduction by nano-scale zero valent iron (NZVI): Effect of ionic strength and initial pH

KSCE Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

Kinetic models for pollutants reduction by Nano-scale Zero Valent Iron (NZVI) were tested in this study to gain a better understanding and description of the reaction. Adsorption kinetic models and a heterogeneous catalytic reaction kinetic equation were proposed for nitrate removal and for ammonia generation, respectively. A widely used pseudo-first-order reaction model was a poor fit for nitrate removal in an iron-limiting condition and for ammonia generation in an excess iron condition. However, in this study, pseudo-first-order and pseudo-second-order adsorption kinetic equations were a good fit for nitrate removal; in addition, a Langmuir-Hinshelwood kinetic equation was able to successfully describe ammonia generation, regardless of the NZVI dose, the ionic strength, and the initial pH. These results strongly indicate that nitrate reduction by NZVI is a heterogeneous catalytic reaction, and that that the kinetic models can be used in diverse conditions. The kinetic parameters correlate well with the reaction condition, unless the NZVI dose was greatly increased or unless the NZVI surface was significantly changed at a very high initial pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aharoni, C. and Tompkins, F. C. (1970). “Kinetics of adsorption and desorption and the elovich equation.” Advanced Catalysis, Vol. 21, pp. 1–49, DOI: 10.1016/S0360-0564(08)60563-5.

    Google Scholar 

  • Ahn, H., Jo, H. Y., Kim, G.-Y., and Koh, Y.-K. (2012). “Effect of NaCl on Cr(VI) Reduction by Granular Zero Valent Iron (ZVI) in Aqueous Solutions.” Mater. Trans., Vol. 53, No. 7, pp. 1324–1329, DOI: 10.2320/matertrans.M2011375.

    Article  Google Scholar 

  • Alidokht, L., Khataeea, A. R., Reyhanitabar, A., and Oustan, S. (2011). “Reductive removal of Cr(VI) by starch-stabilized Fe0 nanoparticles in aqueous solution.” Desalination, Vol. 270, Nos. 1–3, pp. 105–110. DOI: 10.1016/j.desal.2010.11.028.

    Article  Google Scholar 

  • Alowitz, M. J. and Scherer, M. M. (2002). “Kinetics of nitrate, nitrite, and Cr(VI) reduction by iron metal.” Environ. Sci. Technol., Vol. 36, pp. 299–306, DOI: 10.1021/es011000h.

    Article  Google Scholar 

  • Andreas, T., Silke, T., Yuri, K., and Aharon, G. (2009). “Chloroethene dehalogenation with ultrasonically produced air-stable nano iron.” Ultrason. Sonochem., Vol. 16, pp. 617–621, DOI: 10.1016/j.ultsonch.2009.01.005.

    Article  Google Scholar 

  • APHA, AWWA and WEF (1998). Standard methods for the examination of water and wastewater, American Public Health Association, American Water Works Association, Water Environment Federation. Washington, DC, W.A.

    Google Scholar 

  • Cáceres-Jensen, L., Rodríguez-Becerra, J., Parra-Rivero, J., Escudey, M., Barrientosa, L., and Castro-Castillo, V. (2013). “Sorption kinetics of diuron on volcanic ash derived soils.” J. Hazard. Mater., Vol. 261, pp. 602–613, DOI: 10.1016/j.jhazmat.2013.07.073.

    Article  Google Scholar 

  • Chaplin, B. P., Roundy, E., Guy, K. A., Shapley, J. R., and Werth, C. J. (2006). “Effects of natural water ions and humic acid on catalytic nitrate reduction kinetics using an alumina supported Pd-Cu catalyst.” Envir. Sci. Technol., Vol. 40, pp. 3075–3081. DOI: 10.1021/es0525298.

    Article  Google Scholar 

  • Cheung, W. H., Szeto, Y. S., and McKay, G. (2007). “Intraparticle diffusion processes during acid dye adsorption onto chitosan.” Bioresource Technol., Vol. 98, pp. 2897–2904, DOI: 10.1016/j.biortech.2006.09.045.

    Article  Google Scholar 

  • Choe, S., Chang, Y. Y., Hwang, K. Y., and Khim, J. (2000). “Kinetics of reductive denitrification by nanoscale zero-valent iron.” Chemosphere, Vol. 41, No. 8, pp. 1307–1311, DOI: 10.1016/S0045-6535(99)00506-8.

    Article  Google Scholar 

  • Gao, W., Jin, R., Chen, J., Guan, X., Zeng, H., Zhang, F., and Guan N. (2004). “Titania-supported bimetallic catalysts for photocatalytic reduction of nitrate.” Catal. Today, Vol. 90, Nos. 3–4, pp. 331–336, DOI: 10.1016/j.cattod.2004.04.043.

    Article  Google Scholar 

  • García-Figueruelo, C., Bes-Piá, A., Mendoza-Roca, J. A., Lora-García, J., and Cuartas-Uribe, B. (2009). “Reverse osmosis of the retentate from the nanofiltration of secondary effluents.” Desalination, Vol. 240, pp. 274–279, DOI: 10.1016/j.desal.2008.01.052.

    Article  Google Scholar 

  • Gillham, R. W., Vogan, J., Gui, L., Duchene, M., and Son, J. (2010). Iron barrier walls for chlorinated solvent remediation, In: Stroo HF, Ward CH, editors, In Situ Remediation of Chlorinated Solvent Plumes, Springer, New York.

    Google Scholar 

  • Hameed, B. H., Tan, I. A. W., and Ahmad, A. L. (2008). “Adsorption isotherm, kinetic modeling and mechanism of 2,4,6-trichlorophenol on coconut husk-based activated carbon.” Chem. Eng. J., Vol. 144, No. 2, pp. 235–244, DOI: 10.1016/j.cej.2008.01.028.

    Article  Google Scholar 

  • Hayes, K. F., Papelis, C., and Leckie, J. O. (1988). “Modeling ionic strength effects on anion adsorption at hydrous oxide/solution interfaces.” J. Colloid Interf. Sci., Vol. 125, No. 2, pp. 717–726, DOI: 10.1016/0021-9797(88)90039-2.

    Article  Google Scholar 

  • Ho, Y. S. and Ofomaja, A. E. (2006). “Pseudo-second-order model for lead ion sorption from aqueous solutions onto palm kernel fiber.” J. Hazard. Mater., Vol. 129, Nos. 1–3, pp. 137–142, DOI: 10.1016/j.jhazmat.2005.08.020.

    Article  Google Scholar 

  • Huan, A., Zhao-hui, J., Lu, H., and Cheng-hua, Q. (2006). “Synthesis of nanoscale zero-valent iron supported on exfoliated graphite for removal of nitrate.” T. Nonferr. Metal. Soc., Vol. 16, pp. 345–349, DOI: 10.1016/S1003-6326(06)60207-0.

    Article  Google Scholar 

  • Huang, C.-P., Wang, H.-W., and Chiu, P.-C. (1998). “Nitrate reduction by metallic iron.” Water Res., Vol. 32, No. 8, pp. 2257–2264, DOI: 10.1016/S0043-1354(97)00464-8.

    Article  Google Scholar 

  • Huang, Y. H., Zhang, T. C., Shea, P. J., and Comfort, S. D. (2003), “Effects of oxide coating and selected cations on nitrate reduction by iron metal.” J. Environ. Qual., Vol. 32, pp. 1306–1315, DOI: 10.2134/jeq2003.1306.

    Article  Google Scholar 

  • Huang, Y. H. and Zhang, T. C. (2004). “Effects of low pH on nitrate reduction by iron powder.” Water Res., Vol. 38, pp. 2631–2642, DOI: 10.1016/j.watres.2004.03.015.

    Article  Google Scholar 

  • Hwang, Y., Kim, D., Ahn, Y.-T., Moon, C.-M., and Shin, H.-S. (2012). “Recovery of ammonium salt from nitrate-containing water by iron nanoparticles and membrane contactor.” Environ. Eng. Res., Vol. 17, No. 2, pp. 111–116, DOI: /10.4491/eer.2012.17.2.111.

    Article  Google Scholar 

  • Hwang, Y. H., Kim, D. G., Ahn, Y. T., Moon, C. M., and Shin, H.S. (2010). “Fate of nitrogen species in nitrate reduction by nanoscale zero valent iron and characterization of the reaction kinetics.” Water Sci. Technol., Vol. 61, No. 3, pp. 705–712, DOI: 10.2166/wst.2010.895.

    Article  Google Scholar 

  • Li, T., Zhang, Y., Geng, B., Wang, D., Wang, S., and Jin, Z. (2008). “Preparation of nanoiron by water-in-oil (W/O) microemulsion for reduction of nitrate in water.” Proc. 2nd Int. Conf. on Bioinformatics and Biomedical Engineering, Shanghai, China, ICBBE 2008, pp. 3339–3342. DOI: 10.1109/ICBBE.2008.1164.

    Google Scholar 

  • Lin, K.-S., Chang, N.-B., and Chuang, T.-D. (2008a). “Fine structure characterization of zero-valent iron nanoparticles for decontamination of nitrites and nitrates in wastewater and groundwater.” Sci. Technol. Adv. Mater., Vol. 9, 025015 (9 pp), DOI: 10.1088/1468-6996/9/2/025015.

  • Lin, Y.-T., Weng, C.-H., and Chen, F.-Y. (2008b). “Effective removal of AB24 dye by nano/micro-size zero-valent iron.” Sep. Purif. Technol., Vol. 64, pp. 26–30, DOI: 10.1016/j.seppur.2008.08.012.

    Article  Google Scholar 

  • Liou, T. H., Lo, S.-L., Lin, C.-J., Hui, W. K., and Weng, S. C. (2005). “Chemical reduction of an unbuffered nitrate solution using catalyzed and uncatalyzed nanoscale iron particles.” J. Hazard. Mater., Vol. 127, Nos. 1-3, pp. 102–110, DOI: 10.1016/j.jhazmat.2005.06.029.

    Article  Google Scholar 

  • Liu, H. B., Chen, T. H., Chang, D. Y., Chen, D., Liu, Y., He, H. P., and Yuan, R. F. (2012). “Nitrate reduction over nanoscale zero-valent iron prepared by hydrogen reduction of goethite.” Mater. Chem. Phys., Vol. 133, No. 1, pp. 205–211, DOI: 10.1016/j.matchemphys.2012.01.008.

    Article  Google Scholar 

  • Liu, Y., Majetich, S. A., Tilton, R. D., Sholl, D. S., and Lowry, G. V. (2005). “TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties.” Environ. Sci. Technol., Vol. 39, pp. 1338–1345, DOI: 10.1021/es049195r.

    Article  Google Scholar 

  • Luo, J., Song, G., Liu, J., Qiana, G., and Xu, Z. P. (2014). “Mechanism of enhanced nitrate reduction via micro-electrolysis at the powdered zero-valent iron/activated carbon interface.” J. Colloid Interf. Sci., Vol. 435, No. 1, pp. 21–25, DOI: 10.1016/j.jcis.2014.08.043.

    Article  Google Scholar 

  • Ma, F.-Y. (2012). Corrosive effects of chlorides on metals, Pitting Corrosion, Prof. Nasr Bensalah (Ed.), InTech, Rijeka, Croatia.

  • Özacar, M. and Şengil, I. A. (2005). “A kinetic study of metal complex dye sorption onto pine sawdust.” Process Biochem., Vol. 40, No. 2, pp. 565–572, DOI: 10.1016/j.procbio.2004.01.032.

    Article  Google Scholar 

  • Öztürk, N. and Bekta, T. E. (2004). “Nitrate removal from aqueous solution by adsorption onto various materials.” J. Hazard. Mater., Vol. B112, pp. 155–162, DOI: 10.1016/j.jhazmat.2004.05.001.

    Article  Google Scholar 

  • Patoczka, J. and Wilson, D. J. (1984). “Kinetics of the desorption of ammonia from water by diffused aeration.” Separ. Sci. Technol., Vol. 19, No. 1, pp. 77–93, DOI: 10.1080/01496398408059939.

    Article  Google Scholar 

  • Petala, E., Dimos, K., Douvalis, A., Bakas, T., Tucek, J., Zboøil, R., and Karakassides, M. A. (2013). “Nanoscale zero-valent iron supported on mesoporous silica: Characterization and reactivity for Cr(VI) removal from aqueous solution.” J. Hazard. Mater., Vol. 261, pp. 295–306, DOI: 10.1016/j.jhazmat.2013.07.046.

    Article  Google Scholar 

  • Pintar, A., Batista, J., Levee, J., and Kajiuchi, T. (1996). “Kinetics of the catalytic liquid-phase hydrogenation of aqueous nitrate solutions.” Appl. Catal. B-Enviro., Vol. 11, pp. 81–98, DOI: 10.1016/S0926-3373(96)00036-7.

    Article  Google Scholar 

  • Quan, X., Wang, F., Zhao, Q., Zhao, T., and Xiang, J. (2009). “Air stripping of ammonia in a water-sparged aerocyclone reactor.” J. Hazard. Mater., Vol. 170, pp. 983–988, DOI: 10.1016/j.jhazmat.2009.05.083.

    Article  Google Scholar 

  • Ruangchainikom, C., Liao, C.-H., Anotai, J., and Lee, M.-T. (2006). “Effects of water characteristics on nitrate reduction by the Fe0/CO2 process.” Chemosphere, Vol. 63, No. 2, pp. 335–343, DOI: 10.1016/j.chemosphere.2005.06.049.

    Article  Google Scholar 

  • Saleh, N., Kim, H. J., Phenrat, T., Matyjaszewski, K., Tilton, R. D., and Lowry, G. V. (2008). “Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns.” Envir. Sci. Technol., Vol. 42, No. 9, pp. 3349–55, DOI: 10.1021/es071936b.

    Article  Google Scholar 

  • Satapanajaru, T., Chompuchan, C., Suntornchot, P., and Pengthamkeerati, P. (2011). “Enhancing decolorization of Reactive Black 5 and Reactive Red 198 during nano zerovalent iron treatment.” Desalination, Vol. 266, pp. 218–230, DOI: 10.1016/j.desal.2010.08.030.

    Article  Google Scholar 

  • Spiro, M. (1989). Chemical kinetics, in: R.G. Compton (Ed.), Reactions the Liquid–Solid Interface, Vol. 28, Elsevier, Amsterdam.

  • Su, C. and Puls, R. W. (2004). “Nitrate reduction by zerovalent iron: effects of formate, oxalate, citrate, chloride, sulfate, borate, and phosphate.” Envir. Sci. Technol., Vol. 38, No. 9, pp. 2715–2720, DOI: 10.1021/es034650p.

    Article  Google Scholar 

  • Wang, C. B. and Zhang, W. X. (1997). “Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs.” Envir. Sci. Technol., Vol. 31, pp. 2154–2156, DOI: 10.1021/es970039c.

    Article  Google Scholar 

  • Wang, Q., Snyder, S., Kim, J., and Choi, H. (2009). “Aqueous ethanol modified nanoscale zerovalent iron in bromate reduction: Synthesis, characterization, and reactivity.” Envir. Sci. Technol., Vol. 43, pp. 3292–3299, DOI: 10.1021/es803540b.

    Article  Google Scholar 

  • Wang, W., Jin, Z., Li, T., Zhang, H., and Gao S. (2006). “Preparation of spherical iron nanoclusters in ethanol–water solution for nitrate removal.” Chemosphere, Vol. 65, pp. 1396–1404, DOI: 10.1016/j.chemosphere.2006.03.075.

    Article  Google Scholar 

  • Yang, G. C. C., and Lee, H.-L. (2005). “Chemical reduction of nitrate by nanosized iron: kinetics and pathways.” Water Res., Vol. 39, No. 5, pp. 884–894, DOI: 10.1016/j.watres.2004.11.030.

    Article  MathSciNet  Google Scholar 

  • Zawaideh, L. L. and Zhang, T. C. (1998). “The effects of pH and addition of an organic buffer (HEPES) on nitrate transformation in Fe0-water systems.” Water Sci. Technol., Vol. 38, No. 7, pp. 107–115, DOI: 10.1016/S0273-1223(98)00613-1.

    Article  Google Scholar 

  • Zhang, R., Li, J., Liu, C., Shen, J., and Sun, X. (2013). “Reduction of nitrobenzene using nanoscale zero-valent iron conned in channels of ordered mesoporous silica.” Colloid. Surface. A, Vol. 425, pp. 108–114, DOI: 10.1016/j.colsurfa.2013.02.040.

    Article  Google Scholar 

  • Zhang, X., Lin, Y., and Chen, Z. (2009). “2,4,6-Trinitrotoluene reduction kinetics in aqueous solution using nanoscale zero-valent iron.” J. Hazard. Mater., Vol. 165, Nos. 1–3, pp. 923–927, DOI: 10.1016/j.seppur.2010.10.015.

    Article  Google Scholar 

  • Zhou, Y., Lu, P., and Lu, J. (2012). “Application of natural biosorbent and modified peat for bisphenol A removal from aqueous solutions.” Carbohyd. Polym., Vol. 88, No. 2, pp. 502–508, DOI: 10.1016/j.carbpol.2011.12.034.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seok-Oh Ko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, DG., Hwang, YH., Shin, HS. et al. Kinetics of nitrate adsorption and reduction by nano-scale zero valent iron (NZVI): Effect of ionic strength and initial pH. KSCE J Civ Eng 20, 175–187 (2016). https://doi.org/10.1007/s12205-015-0464-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-015-0464-3

Keywords

Navigation