Skip to main content
Log in

Numerical study on flow structure of a shallow laminar round jet

  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

The evolution mechanism and characteristics of the submerged laminar round jet in a viscous homogenous shallow water layer are investigated through computational modeling. The laminar mode is used to solve the Navier-Stokes equations. In order to visualize the formation and evolution of the flow pattern, the volume of fluid (VOF) method is adopted to simulate the free surface of the water layer below the air and to trace the jet fluid. The results show that the jet forms a class of quasi-two-dimensional (Q2D) vortex structures in the ambient fluid with unequal influence from the bottom wall and free surface. The time dependence of three parameters, defined for the flow pattern as jet length, spiral radius and pattern length, is investigated quantitatively in their non-dimensional forms. Three different Reynolds numbers and two injection durations are further considered to discuss their influence on the flow pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MIED R P, MCWILLIAMS J C, LINDEMANN G J. The generation and evolution of mushroom-like vortices [J]. Journal of Physical Oceanography, 1991, 21(4): 489–510.

    Article  Google Scholar 

  2. VOROPAYEV S I, AFANASYEV Y D. Vortex structures in a stratified fluid: Order from chaos [M]. London: Chapman and Hall, 1994.

    Book  MATH  Google Scholar 

  3. IVANOV A Y, GINZBURG A I. Oceanic eddies in synthetic aperture radar images [J]. Proceeding of Indian Academy Sciences (Earth Planetary Science), 2002, 111(3): 281–295.

    Google Scholar 

  4. IKEDA M, EMERY W J. Satellite observations and modeling of meanders in the California current system off Oregon and northern California [J]. Journal of Physical Oceanography, 1984, 14(9): 1434–1450.

    Article  Google Scholar 

  5. FEDOROV K N, GINZBURG A I, KOSTIANOY A G. Modelling of “mushroom-like” currents (vortex dipoles) in a laboratory tank with rotating homogeneous and stratified fluids [J]. Elsevier Oceanography, 1989, 50: 15–24.

    Article  Google Scholar 

  6. VOROPAYEV S I, FERNANDO H J S, SMIRNOV S A, et al. On surface signatures generated by submerged momentum sources [J]. Physics of Fluids, 2007, 19(7): 076603.

    Article  MATH  Google Scholar 

  7. HALLER M C. Rip current dynamics and nearshore circulation [D]. Delaware: Department of Civil and Environmental Engineering, University of Delaware, 1999.

    Google Scholar 

  8. CHEN Y X, CHEN K, YOU Y X, et al. Generation and evolution characteristics of the mushroom-like vortex generated by a submerged round laminar jet [J]. Journal of Hydrodynamics, 2013, 25(5): 778–787.

    Article  Google Scholar 

  9. DURST F, RAY S, ÜNSAL B, et al. The development lengths of laminar pipe and channel flows [J]. Journal of Fluids Engineering, 2005, 127(6): 1154–1160.

    Article  Google Scholar 

  10. MCNAUGHTON K J, SINCLAIR C G. Submerged jets in short cylindrical flow vessels [J]. Journal of Fluid Mechanics, 1966, 25(2): 367–375.

    Article  Google Scholar 

  11. REYNOLDS A J. Observations of a liquid-into-liquid jet [J]. Journal of Fluid Mechanics, 1962, 14(4): 552–556.

    Article  MATH  Google Scholar 

  12. ABRAMOVICH S, SOLAN A. The initial development of a submerged laminar round jet [J]. Journal of Fluid Mechanics, 1973, 59(4): 791–801.

    Article  Google Scholar 

  13. PETROV P A. Mechanism of formation of vortex rings [J]. Fluid Dynamics, 1973, 8(2): 190–195.

    Article  Google Scholar 

  14. OROPAYEV S I, AFANASYEV Y D, KORABLE V N, et al. On the frontal collision of two round jets in water [J]. Physics of Fluids, 2003, 15(11): 3429–3433.

    Article  MathSciNet  Google Scholar 

  15. AFANASYEV Y D, KORABLE V N. Starting vortex dipoles in a viscous fluid: Asympotic theory, numerical simulations and laboratory experiments [J]. Physics of Fluids, 2004, 16(11): 3850–3858.

    Article  MathSciNet  MATH  Google Scholar 

  16. SOUS D, BONNETON N, SOMMERIA J. Transition from deep to shallow water layer: Formation of vortex dipoles [J]. European Journal of Mechanics-B/Fluids, 2005, 24(1): 19–32.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Chen  (陈 科).

Additional information

Foundation item: the National Natural Science Foundation of China (No. 11072153)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Zhao, K. & You, Y. Numerical study on flow structure of a shallow laminar round jet. J. Shanghai Jiaotong Univ. (Sci.) 22, 257–264 (2017). https://doi.org/10.1007/s12204-017-1830-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-017-1830-8

Keywords

CLC number

Navigation