Skip to main content
Log in

Stochastic fatigue life and reliability prediction based on residual strength

  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

A randomized approach is developed to solve a deterministic equation. The method uses random deterministic approach to achieve the fatigue life based on residual strength and S-N curve. We propose a one-to-one transformation method to deduce the distribution of fatigue life from the residual strength. The proposed method is simple and effective, and can be used for fatigue life prediction. An example is given to illustrate how the method works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fatemi A, Yang L. Cumulative fatigue damage and life prediction theories: A survey of the state of the art for homogenous materials [J]. Internationl Journal of Fatigue, 1998, 20(1): 9–34.

    Article  Google Scholar 

  2. Zhu S P, Huang H Z, He L P, et al. A generalized energy-based fatigue-creep damage parameter for life prediction of turbine disk alloys [J]. Engineering Fracture Mechanics, 2012, 90: 89–100.

    Article  Google Scholar 

  3. Zhu S P, Huang H Z, Wang Z L. Fatigue life estimation considering damaging and strengthening of low amplitude loads under different load sequences using fuzzy sets approach [J]. International Journal of Damage Mechanics, 2011, 20: 876–899.

    Article  Google Scholar 

  4. Newman Jr J C, Phillipsa E P, Swainb M H. Fatigue-life prediction methodology using small-crack theory [J]. International Journal of Fatigue, 1999, 21: 109–119.

    Article  Google Scholar 

  5. Shang D G, Yao W X. A non-linear damage cumulative model for uniaxial fatigue [J]. International Journal of Fatigue, 1999, 21(2): 187–194.

    Article  Google Scholar 

  6. Luo X, Luo R, Lytto R L. Energy-based mechanistic approach for damage characterization of pre-flawed visco-elasto-plastic materials [J]. Mechanics of Materials, 2014, 70: 18–32.

    Article  Google Scholar 

  7. Manson S S, Halford G R. Practical implementation of the double linear damage rule and damage curve approach for treating cumulative fatigue damage [J]. International Journal of Fracture, 1981, 17(12): 169–192.

    Article  Google Scholar 

  8. Papadopoulos I V. Long life fatigue under multiaxial loading [J]. International Journal of Fatigue, 2001, 23: 839–849.

    Article  Google Scholar 

  9. Dai J, Das D, Ohadi M, et al. Reliability risk mitigation of free air cooling through prognostics and health management [J]. Applied Energy, 2013, 111: 104–112.

    Article  Google Scholar 

  10. Zhu S P, Huang H Z, Liu Y, et al. A practical method for determining the Corten-Dolan exponent and its application to fatigue life prediction [J]. International Journal of Turbo and Jet Engines, 2012, 29(2): 79–87.

    Article  Google Scholar 

  11. Chaboche J L, Lesne P M. A non-linear continuous fatigue damage model [J]. Fatigue and Fracture of Engineering Materials and Structures, 1988, 11(1): 1–7.

    Article  Google Scholar 

  12. Cheng G X, Plumtree A. A fatigue damage accumulation model based on continuum damage mechanics and ductility exhaustion [J]. International Journal of Fatigue, 1998, 20(7): 495–501.

    Article  Google Scholar 

  13. Chaboche J L. Continuum damage mechanics. PartII. Damage growth, crack initiation and crack growth [J]. Journal of Applied Mechanics, 1988, 55(1): 65–72.

    Article  Google Scholar 

  14. Shen H, Lin J, Mu E. Probabilistic model on stochastic fatigue damage [J]. International Journal of Fatigue, 2000, 22(7): 569–572.

    Article  Google Scholar 

  15. Gatts R R. Application of a cumulative damage concept to fatigue [J]. Journal of Fluids Engineering, 1961, 83(4): 529–534.

    Google Scholar 

  16. Lemaitre J, Plumtree A. Application of damage concept to predict creep-fatigue failures [J]. Journal of Engineering Materials and Technology, 1979, 101(3): 284–292.

    Article  Google Scholar 

  17. Kim J, Yi J, Zi G, et al. Fatigue life prediction methodology using entropy index of stress interaction and crack severity index of effective stress [J]. International Journal of Damage Mechanics, 2013, 22(3): 375–392.

    Article  Google Scholar 

  18. Liu Y, Mahadevan S. Stochastic fatigue damage modeling under variable amplitude loading [J]. International Journal of Fatigue, 2007, 29(6): 1149–1161.

    Article  MATH  Google Scholar 

  19. Liao M, Xu X, Yang Q. Cumulative fatigue damage dynamic interference statistical model [J] International Journal of Fatigue, 1995, 17(8): 559–566.

    Article  Google Scholar 

  20. Rathod V, Yadav O P, Rathore A, et al. Probabilistic modeling of fatigue damage accumulation for reliability prediction [J]. International Journal of Quality, Statistics, and Reliability, 2011, doi: 10.1155/2011/718901 (published online).

    Google Scholar 

  21. Wu W F, Huang T H. Prediction of fatigue damage and fatigue life under random loading [J]. International Journal of Pressure Vessels and Piping, 1993, 53(2): 273–298.

    Article  Google Scholar 

  22. Meneghetti G. Analysis of the fatigue strength of a stainless steel based on the energy dissipation [J]. International Journal of Fatigue, 2007, 29(1): 81–94.

    Article  Google Scholar 

  23. Morel F. A critical plane approach for life prediction of high cycle fatigue under multiaxial variable amplitude loading [J]. International Journal of Fatigue, 2000, 22: 101–119.

    Article  Google Scholar 

  24. Pavlou D G. A phenomenological fatigue damage accumulation rule based on hardness increasing for the 2024-T 42 aluminum [J]. Engineering Structures, 2002, 24(11): 1363–1368.

    Article  Google Scholar 

  25. Shang De-guang, Yao Wei-xing. Study on non-linear continuous damage cumulative model for uniaxial fatigue [J]. Acta Aeronautica ET Astronautica Sinica, 1998, 19(6): 647–656 (in Chinese).

    Google Scholar 

  26. Lagoda T, Macha E, Nieslony A. Fatigue life calculation by means of the cycle counting and spectral methods under multiaxial random loading [J]. Fatigue & Fracture of Engineering: Materials & Structures, 2005, 28(4): 409–420.

    Article  Google Scholar 

  27. Miller K J, Zachariah K P. Cumulative damage laws for fatigue crack initiation and stage I propagatoin [J]. Journal of Strain Analysis for Engineering Design, 1977, 12(4): 262–270.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-zhong Huang  (黄洪钟).

Additional information

Foundation item: the National Natural Science Foundation of China (No. 11302044)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, Fj., Zhu, Sp., Gao, Hy. et al. Stochastic fatigue life and reliability prediction based on residual strength. J. Shanghai Jiaotong Univ. (Sci.) 20, 331–337 (2015). https://doi.org/10.1007/s12204-015-1632-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-015-1632-9

Key words

CLC number

Navigation