Skip to main content
Log in

Energy intensity analysis of modes in hybrid plasmonic waveguide

  • Research Article
  • Published:
Frontiers of Optoelectronics Aims and scope Submit manuscript

Abstract

A hybrid plasmonic waveguide containing silicon core, silver cap and ultra-thin sandwiched SiO2 layer is studied. By analyzing the mode distribution patterns and the curves of mode effective index, we show how the plasmonic mode around the metal surface is coupled with the fundamental mode in the silicon core to form a squeezed hybrid mode. The ability of the hybrid plasmonic waveguide in energy confinement is also discussed quantitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science, 2006, 311(5758): 189–193

    Article  Google Scholar 

  2. Zia R, Schuller J A, Chandran A, Brongersma M L. Plasmonics: the next chip-scale technology. Materials Today, 2006, 9(7–8): 20–27

    Article  Google Scholar 

  3. Tanaka K, Tanaka M. Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide. Applied Physics Letters, 2003, 82(8): 1158–1160

    Article  Google Scholar 

  4. Kusunoki F, Yotsuya T, Takahara J, Kobayashi T. Propagation properties of guided waves in index-guided two-dimensional optical waveguides. Applied Physics Letters, 2005, 86(21): 211101

    Article  Google Scholar 

  5. Pile D F P, Gramotnev D K. Plasmonic subwavelength waveguides: next to zero losses at sharp bends. Optics Letters, 2005, 30(10): 1186–1188

    Article  Google Scholar 

  6. Liu L, Han Z H, He S. Novel surface plasmon waveguide for high integration. Optics Express, 2005, 13(17): 6645–6650

    Article  Google Scholar 

  7. Veronis G, Fan S H. Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides. Applied Physics Letters, 2005, 87(13): 131102

    Article  Google Scholar 

  8. Pile D F P, Gramotnev D K. Channel plasmon-polariton in a triangular groove on a metal surface. Optics Letters, 2004, 29(10): 1069–1071

    Article  Google Scholar 

  9. Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature, 2006, 440(7083): 508–511

    Article  Google Scholar 

  10. Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X. A hybrid plasmonic waveguide for subwavelength confinement and longrange propagation. Nature Photonics, 2008, 2(8): 496–500

    Article  Google Scholar 

  11. Fujii M, Leuthold J, Freude W. Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides. IEEE Photonics Technology Letters, 2009, 21(6): 362–364

    Article  Google Scholar 

  12. Dai D X, Yang L, He S L. Ultrasmall thermally tunable microring resonator with a submicrometer heater on Si nanowires. Journal of Lightwave Technology, 2008, 26(6): 704–709

    Article  Google Scholar 

  13. Alam M Z, Meier J, Aitchison J S, Mojahedi M. Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends. Optics Express, 2010, 18(12): 12971–12979

    Article  Google Scholar 

  14. Dai D X, He S L. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Optics Express, 2009, 17(19): 16646–16653

    Article  Google Scholar 

  15. Dai D X, Shi Y C, He S L, Wosinski L, Thylen L. Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or highindex gain medium. Optics Express, 2011, 19(14): 12925–12936

    Article  Google Scholar 

  16. Ordal M A, Bell R J, Alexander R W Jr, Long L L, Querry M R. Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. Applied Optics, 1985, 24(24): 4493–4499

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, R., Zhang, Y. & He, S. Energy intensity analysis of modes in hybrid plasmonic waveguide. Front. Optoelectron. 5, 68–72 (2012). https://doi.org/10.1007/s12200-012-0195-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-012-0195-8

Keywords

Navigation