Skip to main content
Log in

Investigation of Al Schottky junction on n-type CdS film deposited on polymer substrate

  • Research Article
  • Published:
Frontiers of Optoelectronics in China Aims and scope Submit manuscript

Abstract

A systematic study has been made on the behavior of Al/n-CdS thin film junction on flexible polymer substrate (polyethylene terephthalate, PET) grown using thermal evaporation method. Temperature dependence of I–V measurements for this junction has been done which closely follow the equations of Schottky barrier junction dominated by thermionic emission mechanism. Intrinsic and contact properties such as barrier height, ideality factor and series resistance have been calculated from I–V characteristics. The barrier height of Al/n-CdS junction is found to increase with increase in temperature whereas ideality factor and series resistance decrease with increase in temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DeKlerk J, Kelly R F. Vapor-deposited thin film piezoelectric transducers. Review of Scientific Instruments, 1965, 36(4): 506–510

    Article  Google Scholar 

  2. Andrews A M, Haden C R. Electroluminescence in vacuum evaporated cadmium sulfide. Proceedings of the IEEE, 1969, 57(1): 99–100

    Article  Google Scholar 

  3. Dresner J, Shallcross F V. Ractification and space-charge-limited currents in CdS films. Solid-State Electronics, 1962, 5(4): 205–210

    Article  Google Scholar 

  4. Mohanchandra K P, Uchil J. Electrical properties of CdS and CdSe films deposited on vibrating substrates. Journal of Applied Physics, 1998, 84(1): 306–310

    Article  Google Scholar 

  5. Ferekides C S, Marinskiy D, Marinskaya S, Tetali B, Oman D, Morel D L. CdS films prepared by the close-spaced sublimation and their influence on CdTe/CdS solar cell performance. In: Proceedings of the Twenty Fifth IEEE Photovoltaic Specialists Conference. 1996, 751–756

  6. Uda H, Yonezawa H, Ohtsubo Y, Kosaka M, Sonomura H. Thin CdS films prepared by metalorganic chemical vapor deposition. Solar Energy Materials and Solar Cells, 2003, 75(1–2): 219–226

    Article  Google Scholar 

  7. Fujita S, Kawakami Y. MO(GS)MBE and photo-MO(GS)MBE of II-VI semiconductors. Journal of Crystal Growth, 1996, 164(1–4): 196–201

    Article  Google Scholar 

  8. Gluszak E A, Hinckley S. Growth of ultrathin chemically-deposited CdS films from an ammonia-thiourea reaction system. In: Proceedings of Conference on Optoelectronic and Microelectronic Materials and Devices. 2000, 218–221

  9. Pence S, Bates C W Jr, Varner L. Morphological features in films of CdS prepared by chemical spray pyrolysis. Materials Letters, 1995, 23(4–6): 195–201

    Article  Google Scholar 

  10. Anuar K, Zulkarnain Z, Saravanan N, Nazri M, Sharin R. Effects of electrodeposition periods and solution temperatures towards the properties of CdS thin films prepared in the presence of sodium Tartrate. Materials Science, 2005, 11(2): 101–104

    Google Scholar 

  11. Lee J H, Lee D J. Effects of CdCl2 treatment on the properties of CdS films prepared by r.f. magnetron sputtering. Thin Solid Films, 2007, 515(15): 6055–6059

    Article  Google Scholar 

  12. Chavez H, Jorden M, McClure J C, Lush G, Singh V P. Physical and electrical characterization of CdS films deposited by vacuum evaporation, solution growth and spray pyrolysis. Journal of Materials Science Materials in Electronics, 1997, 8(3): 151–154

    Article  Google Scholar 

  13. Mathew X, Enriquez J P, Romeo A, Tiwari A N. CdTe/CdS solar cells on flexible substrates. Solar Energy, 2004, 77(6): 831–838

    Article  Google Scholar 

  14. Patel B K, Nanda K K, Sahu S N. Interface characterization of nanocrystalline CdS/Au junction by current-voltage and capacitance-voltage studies. Journal of Applied Physics, 1999, 85(7): 3666–3670

    Article  Google Scholar 

  15. Gupta S, Patidar D, Saxena N S, Sharma K, Sharma T P. Electrical study of Cu-CdS and Zn-CdS Schottky junction. Optoelectronics and Advanced Materials-Rapid Communications, 2008, 2(4): 205–208

    Google Scholar 

  16. Farag A A M, Yahia I S, Fadel M. Electrical and photovoltaic characteristics of Al/n-CdS Schottky diode. International Journal of Hydrogen Energy, 2009, 34(11): 4906–4913

    Article  Google Scholar 

  17. Callister W D. Materials Science and Engineering: An Introduction, in Characteristics, Applications and Processing of Polymers. New York: John Wiley & Sons, 2000

    Google Scholar 

  18. Lalitha S, Sathyamoorthy R, Senthilarasu S, Subbarayan A, Natarajan K. Characterization of CdTe thin film—dependence of structural and optical properties on temperature and thickness. Solar Energy Materials and Solar Cells, 2004, 82(1–2): 187–199

    Article  Google Scholar 

  19. Sze S M. Physics of Semiconductor Devices. 2nd ed. New York: Wiley Interscience, 1981, 255

    Google Scholar 

  20. Gümüs A, Türüt A, Yalcin N. Temperature dependent barrier characteristics of CrNiCo alloy Schottky contacts on n-type molecular epitaxy GaAs. Journal of Applied Physics, 2002, 91(1): 245–250

    Article  Google Scholar 

  21. Chand S, Kumar J. Current-voltage characteristics and barrier parameters of Pd2Si/p-Si(111) Schottky diodes in a wide temperature range. Semiconductor Science and Technology, 1995, 10(12): 1680–1688

    Article  Google Scholar 

  22. Tung R T. Electron transport of inhomogeneous Schottky barriers. Applied Physics Letters, 1991, 58(24): 2821–2823

    Article  Google Scholar 

  23. Tung R T. Electron transport at metal-semiconductor interfaces: general theory. Physical Review B, 1992, 45(23): 13509–13523

    Article  Google Scholar 

  24. Tung R T, Levi A F, Sullivan J P, Schrey F. Schottky-barrier inhomogeneity at epitaxial NiSi2 interfaces on Si(100). Physical Review Letters, 1991, 66(1): 72–75

    Article  Google Scholar 

  25. Werner J H, Güttler H H. Barrier inhomogeneities at Schottky contacts. Journal of Applied Physics, 1991, 69(3): 1522–1533

    Article  Google Scholar 

  26. Sullivan J P, Tung R T, Pinto M R, Graham WR. Electron transport of inhomogeneous Schottky barriers: a numerical study. Journal of Applied Physics, 1991, 70(12): 7403–7424

    Article  Google Scholar 

  27. Pattabi M, Krishnan S, Ganesh, Mathew X. Effect of temperature and electron irradiation on the I–V characteristics of Au/CdTe Schottky diodes. Solar Energy, 2007, 81(1): 111–116

    Article  Google Scholar 

  28. Zhu S, Van Meirhaeghe R L, Detavernier C, Cardon F, Ru G P, Qu X P, Li B Z. Barrier height inhomogeneities of epitaxial CoSi2 Schottky contacts on n-Si (100) and (111). Solid-State Electronics, 2000, 44(4): 663–671

    Article  Google Scholar 

  29. Karadeniz S, Sahin M, Tugluoglu N, Safak H. Temperature dependent barrier characteristics of Ag/p-SnS Schottky barrier diodes. Semiconductor Science and Technology, 2004, 19(9): 1098–1103

    Article  Google Scholar 

  30. Marsal L F, Pallarès J, Correig X, Orpella A, Bardés D, Alcubilla R. Current transport mechanisms in n-type amorphous silicon carbon on p-type crystalline silicon (a-Si0.8C0.2:H/c-Si) heterojunction diodes. Semiconductor Science and Technology, 1998, 13(10): 1148–1153

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandhya Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, S., Patidar, D., Baboo, M. et al. Investigation of Al Schottky junction on n-type CdS film deposited on polymer substrate. Front. Optoelectron. China 3, 321–327 (2010). https://doi.org/10.1007/s12200-010-0102-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-010-0102-0

Keywords

Navigation