Skip to main content
Log in

Progress in creating second-order optical nonlinearity in silicate glasses and waveguides through thermal poling

  • Review Article
  • Published:
Frontiers of Optoelectronics in China Aims and scope Submit manuscript

Abstract

This paper describes progress in characterizing the distribution and localization of the second-order nonlinearity induced in thermally poled silicate glasses and optical waveguides, in particular, optical fibers. It starts by describing the basics of the poling technique, especially the most commonly used “thermal poling” technique. Then results of systematic investigation of the distribution of the second-order nonlinearity in poled glass and special fibers using second-harmonic microscopy are presented. Interesting issues such as the effectiveness of the poling technique for waveguides formed by ultrafast laser pulses are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Myers R A, Mukherjee N, Brueck S R J. Large second-order nonlinearity in poled fused silica. Optics Letters, 1991, 16(22): 1732–1734

    Article  Google Scholar 

  2. Alley T G, Brueck S R J, Myers R A. Space charge dynamics in thermally poled fused silica. Journal of Non-Crystalline Solids, 1998, 242(2–3): 165–176

    Article  Google Scholar 

  3. Kazansky P G, Russell P St J. Thermally poled glass: frozen-in electric field or oriented dipoles? Optics Communications, 1994, 110(5–6): 611–614

    Article  Google Scholar 

  4. Fujiwara T, Wong D, Zhao Y, Fleming S, Poole S, Sceats M. Electro-optic modulation in a germanosilicate fibre with UV-excited poling. Electronics Letters, 1995, 31(7): 573–575

    Article  Google Scholar 

  5. Okada A, Ishii K, Mito K, Sasaki K. Phase-matched second-harmonic generation in novel corona poled glass waveguides. Applied Physics Letters, 1992, 60(23): 2853–2855

    Article  Google Scholar 

  6. Kazansky P G, Kamal A, Russell P St J. High second order nonlinearities induced in lead silicate glass by electron beam irradiation. Optics Letters, 1993, 18(9): 693–695

    Article  Google Scholar 

  7. Henry L J, McGrath B V, Alley T G, Kester J J. Optical nonlinearity in fused silica by proton implantation. Journal of the Optical Society of America B: Optical Physics, 1996, 13(5): 827–836

    Article  Google Scholar 

  8. Alley T G, Brueck S R J. Visualization of the nonlinear optical space-charge region of bulk thermally poled fused-silica glass. Optics Letters, 1998, 23(15): 1170–1172

    Article  Google Scholar 

  9. Margulis W, Laurell F. Interferometric study of poled glass under etching. Optics Letters, 1996, 21(21): 1786–1788

    Article  Google Scholar 

  10. Kudlinksi A, Quiquempois Y, Lelek M, Zeghlache H, Martinelli G. Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a submicron resolution. Applied Physics Letters, 2003, 83(17): 3623–3625

    Article  Google Scholar 

  11. An H, Fleming S, Cox G. Visualization of second-order nonlinear layer in thermally poled fused silica glass. Applied Physics Letters, 2004, 85(24): 5819–5821

    Article  Google Scholar 

  12. Deparis O, Corbari C, Kazansky P G, Sakaguchi K. Enhanced stability of the second-order optical nonlinearity in poled glasses. Applied Physics Letters, 2004, 84(24): 4857–4859

    Article  Google Scholar 

  13. An H, Fleming S. Second-order optical nonlinearity in thermally poled borosilicate glass. Applied Physics Letters, 2006, 89(18): 181111

    Article  Google Scholar 

  14. An H, Fleming S. Second-order optical nonlinearity and accompanying near-surface structural modifications in thermally poled soda-lime silicate glasses. Journal of the Optical Society of America B: Optical Physics, 2006, 23(11): 2303–2309

    Article  Google Scholar 

  15. Wong D, Xu W, Fleming S, Janos M, Lo K-M. Frozen-in electrical field in thermally poled fibers. Optical Fiber Technology, 1999, 5(2): 235–241

    Article  Google Scholar 

  16. An H, Fleming S. Characterization of a second-order nonlinear layer profile in thermally poled optical fibers with second-harmonic microscopy. Optics Letters, 2005, 30(8): 866–868

    Article  Google Scholar 

  17. An H, Fleming S. Hindering effect of the core-cladding interface on the progression of the second-order nonlinearity layer in thermally poled optical fibers. Applied Physics Letters, 2005, 87(10): 101108

    Article  Google Scholar 

  18. An H, Fleming S. Overcoming the impeding effect of core-cladding interface on the progression of the second-order nonlinearity in thermally poled optical fibers. Applied Optics, 2006, 45(24): 6212–6217

    Article  Google Scholar 

  19. An H, Fleming S. Time evolution of the second-order nonlinearity layer in thermally poled optical fiber. Applied Physics Letters, 2006, 89(23): 231105

    Article  Google Scholar 

  20. An H, Fleming S. Creating large second-order nonlinearity in twin-hole optical fibre with core at the centre of the two holes. Electronics Letters, 2007, 43(4): 206–207

    Article  Google Scholar 

  21. Davis K M, Miura K, Sugimoto N, Hirao K. Writing waveguides in glass with a femtosecond laser. Optics Letters, 1996, 21(21): 1729–1731

    Article  Google Scholar 

  22. Schaffer C B, Brodeur A, García J F, Mazur E. Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy. Optics Letters, 2001, 26(2): 93–95

    Article  Google Scholar 

  23. Corbari C, Mills J D, Deparis O, Klappauf B G, Kazansky P G. Thermal poling of glass modified by femtosecond laser irradiation. Applied Physics Letters, 2002, 81(9): 1585–1587

    Article  Google Scholar 

  24. Li G, Winick K A, Said A A, Dugan M, Bado P. Waveguide electrooptic modulator in fused silica fabricated by femtosecond laser direct writing and thermal poling. Optics Letters, 2006, 31(6): 739–741

    Article  Google Scholar 

  25. An H, Fleming S, McMillen B W, Chen K P, Snoke D. Thermal poling induced second-order nonlinearity in femtosecond lasermodified fused silica. Applied Physics Letters, 2008, 93(6): 061115

    Article  Google Scholar 

  26. Glezer E N, Mazur E. Ultrafast-laser driven micro-explosions in transparent materials. Applied Physics Letters, 1997, 71(7): 882–884

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Fleming.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fleming, S., An, H. Progress in creating second-order optical nonlinearity in silicate glasses and waveguides through thermal poling. Front. Optoelectron. China 3, 84–91 (2010). https://doi.org/10.1007/s12200-009-0078-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-009-0078-9

Keywords

Navigation