Skip to main content
Log in

Analyses and calculations of noise in optical coherence tomography systems

  • Research Article
  • Published:
Frontiers of Optoelectronics in China Aims and scope Submit manuscript

Abstract

Significant progress has been made in the study of optical coherence tomography (OCT) - a non-invasive, high resolution, and in vivo diagnostic method for medical imaging applications. In this paper, the principles of noise analyses for OCT systems have been described. Comparisons are made of signal-to-noise ratios for both balanced and unbalanced detection schemes under the ideal no-stray light situation as well as the non-ideal situation where residual reflections and scatterings are presented. Numerical examples of noise calculation accompanied by detailed comparison of the main characteristics of both time-domain and frequency-domain OCT systems are also presented. It is shown that a larger dynamic range can be achieved for a Fourier-domain OCT system even under the circumstances of high-speed image acquisition. The main results presented in this paper should be useful for the development of high performance OCT systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Huang D, Swanson E A, Lin C P, et al. Optical coherence tomography. Science, 1991, 254(5035): 1178–1181

    Article  Google Scholar 

  2. Schmitt J M. Optical Coherence Tomography (OCT): a review. IEEE Journal of Selected Topics in Quantum Electronics, 1999, 5(4): 1205–1215

    Article  Google Scholar 

  3. Fercher A F, Drexler W, Hitzenberger C K, et al. Optical coherence tomography - principles and applications. Reports on Progress in Physics, 2003, 66(2): 239–303

    Article  Google Scholar 

  4. De Boer J F, Milner T E, Van Gemert M J C, et al. Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography. Optics Letters, 1997, 22(12): 934–936

    Article  Google Scholar 

  5. Oh J-T, Kim S-W. Polarization-sensitive optical coherence tomography for photoelasticity testing of glass/epoxy composites. Optics Express, 2003, 11(14): 1669–1676

    Google Scholar 

  6. Chen Z P, Milner T E, Dave D, et al. Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media. Optics Letters, 1997, 22(1): 64–66

    Article  Google Scholar 

  7. Chen Z P, Milner T E, Srinivas S, et al. Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography. Optics Letters, 1997, 22(14): 1119–1121

    Article  Google Scholar 

  8. Schmitt J M, Xiang S H, Yung K M. Differential absorption imaging with optical coherence tomography. Journal of the Optical Society of American A, 1998, 15(9): 2288–2296

    Article  Google Scholar 

  9. Wojtkowski M, Bajraszewski T, Targowski P, et al. Real-time in vivo imaging by high-speed spectral optical coherence tomography. Optics Letters, 2003, 28(19): 1745–1747

    Article  Google Scholar 

  10. Jia Y Q, Liang Y M, Mu G G, et al. Analysis of fast scanning system in optical coherence tomography. Chinese Journal of Laser Medicine & Surgery, 2006, 15(1): 62–65 (in Chinese)

    Google Scholar 

  11. Leitgeb R, Hitzenberger C K, Fercher A F. Performance of Fourier domain vs. time domain optical coherence tomography. Optics Express, 2003, 11(8): 889–894

    Google Scholar 

  12. Yun S H, Tearney G J, Bouma B E, et al. High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength. Optics Express, 2003, 11(26): 3598–3604

    Article  Google Scholar 

  13. Mansuripur M. The Physical Principles of Magneto-optical Recording. London: Cambridge University Press, 1998, 295–306

    Google Scholar 

  14. Rollins A M, Izatt J A. Optimal interferometer designs for optical coherence tomography. Optics Letters, 1999, 24(21): 1484–1486

    Article  Google Scholar 

  15. Podoleanu A G. Unbalanced versus balanced operation in an optical coherence tomography system. Applied Optics, 2000, 39(1): 173–182

    Article  Google Scholar 

  16. Takada K. Noise in optical low-coherence reflectometry. IEEE Journal of Quantum Electronics, 1998, 34(7): 1098–1108

    Article  Google Scholar 

  17. Schmitt J M, Xiang S H, Yung K M. Speckle in optical coherence tomography. Journal of Biomedical Optics, 1999, 4(1): 95–105

    Article  Google Scholar 

  18. Yun S H, Tearney G J, De Boer J F, et al. High-speed optical frequency-domain imaging. Optics Express, 2003, 11(22): 2953–2963

    Article  Google Scholar 

  19. Nassif N A, Cense B, Park B H, et al. In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve. Optics Express, 2004, 12(3): 367–376

    Article  Google Scholar 

  20. Wojtkowski M, Srinivasan V J, Ko T H, et al. Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. Optics Express, 2004, 12(11): 2404–2422

    Article  Google Scholar 

  21. Choma M A, Sarunic M V, Yang C, et al. Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Optics Express, 2003, 11(18): 2183–2189

    Google Scholar 

  22. De Boer J F, Cense B, Park B H, et al. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Optics Letters, 2003, 28(21): 2067–2069

    Article  Google Scholar 

  23. Huber R, Adler D C, Fujimoto J G. Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s. Optics Letters, 2006, 31(20): 2975–2977

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianong Zhu.

Additional information

Translated and revised from Acta Photonica Sinica, 2007, 36(3): 452–461 [译自: 光子学报]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, X., Liang, Y., Mao, Y. et al. Analyses and calculations of noise in optical coherence tomography systems. Front. Optoelectron. China 1, 247–257 (2008). https://doi.org/10.1007/s12200-008-0034-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-008-0034-0

Keywords

Navigation