Skip to main content

Advertisement

Log in

Quantification of Antibody Persistence for Cell Surface Protein Labeling

  • Original Article
  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Introduction

Antibodies are an essential research tool for labeling surface proteins but can potentially influence the behavior of proteins and cells to which they bind. Because of this, researchers and clinicians are interested in the persistence of these antibodies, particularly for live-cell applications. We developed an easily adoptable method for researchers to characterize antibody removal timelines for any cell–antibody combination, with the benefit of studying broad, hypothesized mechanisms of antibody removal.

Methods

We developed a method using four experimental conditions to elucidate the contributions of possible factors influencing antibody removal: cell proliferation, internalization, permanent dissociation, and environmental perturbation. This method was tested on adipose-derived stem cells and a human lung fibroblast cell line with anti-CD44, CD90, and CD105 antibodies. The persistence of the primary antibody was probed using a fluorescent secondary antibody daily over 10 days. Relative contributions by the antibody removal mechanisms were quantified based on differences between the four culture conditions.

Results

Greater than 90% of each antibody tested was no longer present on the surface of the two cell types after 5 days, with removal observed in as little as 1 day post-labeling. Anti-CD90 antibody was primarily removed by environmental perturbation, anti-CD105 antibody by internalization, and anti-CD44 antibody by a combination of all four factors.

Conclusions

Antibody removal mechanism depended on the specific antibody tested, while removal timelines for the same antibody depended more on cell type. This method should be broadly relevant to researchers interested in quantifying an initial timeframe for uninhibited use of antibody-labeled cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Ackerman, M. E., D. Pawlowski, and K. D. Wittrup. Effect of antigen turnover rate and expression level on antibody penetration into tumor spheroids. Mol. Cancer Ther. 7:2233–2240, 2008.

    Google Scholar 

  2. Alon, R., E. A. Bayer, and M. Wilchek. Affinity cleavage of cell surface antibodies using the avidin-biotin system. J. Immunol. Methods 165:127–134, 1993.

    Google Scholar 

  3. Alt, E., Y. Yan, S. Gehmert, Y. H. Song, A. Altman, S. Gehmert, D. Vykoukal, and X. Bai. Fibroblasts share mesenchymal phenotypes with stem cells, but lack their differentiation and colony-forming potential. Biol. Cell 103:197–208, 2011.

    Google Scholar 

  4. Audran, R., B. Drenou, F. Wittke, A. Gaudin, T. Lesimple, and L. Toujas. Internalization of human macrophage surface antigens induced by monoclonal antibodies. J. Immunol. Methods 188:147–154, 1995.

    Google Scholar 

  5. Belleudi, F., E. Marra, F. Mazzetta, L. Fattore, M. R. Giovagnoli, R. Mancini, L. Aurisicchio, M. R. Torrisi, and G. Ciliberto. Monoclonal antibody-induced ErbB3 receptor internalization and degradation inhibits growth and migration of human melanoma cells. Cell Cycle 11:1455–1467, 2012.

    Google Scholar 

  6. Bergtold, A., D. D. Desai, A. Gavhane, and R. Clynes. Cell surface recycling of internalized antigen permits dendritic cell priming of B cells. Immunity 23:503–514, 2005.

    Google Scholar 

  7. Congdon, E. E., J. Gu, H. B. Sait, and E. M. Sigurdsson. Antibody uptake into neurons occurs primarily via clathrin-dependent Fcgamma receptor endocytosis and is a prerequisite for acute tau protein clearance. J. Biol. Chem. 288:35452–35465, 2013.

    Google Scholar 

  8. Davies, O. G., P. R. Cooper, R. M. Shelton, A. J. Smith, and B. A. Scheven. Isolation of adipose and bone marrow mesenchymal stem cells using CD29 and CD90 modifies their capacity for osteogenic and adipogenic differentiation. J. Tissue. Eng. 6:1–10, 2015.

    Google Scholar 

  9. des Roziers, N. B., and S. Squalli. Removing IgG antibodies from intact red cells: comparison of acid and EDTA, heat, and chloroquine elution methods. Transfusion 37:497–501, 1997.

    Google Scholar 

  10. Dominici, M. L. B. K., K. Le Blanc, I. Mueller, I. Slaper-Cortenbach, F. C. Marini, D. S. Krause, R. J. Deans, A. Keating, D. J. Prockop, and E. M. Horwitz. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317, 2006.

    Google Scholar 

  11. Francis, S. L., S. Duchi, C. Onofrillo, C. Di Bella, and P. F. M. Choong. Adipose-derived mesenchymal stem cells in the use of cartilage tissue engineering: the need for a rapid isolation procedure. Stem Cells Int. 2018:8947548, 2018.

    Google Scholar 

  12. Gossett, D. R., W. M. Weaver, A. J. Mach, S. C. Hur, H. T. K. Tse, W. Lee, H. Amini, and D. Di Carlo. Label-free cell separation and sorting in microfluidic systems. Anal. Bioanal. Chem. 397:3249–3267, 2010.

    Google Scholar 

  13. Jiskoot, W., E. C. Beuvery, A. A. de Koning, J. N. Herron, and D. J. Crommelin. Analytical approaches to the study of monoclonal antibody stability. Pharm. Res. 7:1234–1241, 1990.

    Google Scholar 

  14. Jones, A. R., C. C. Stutz, Y. Zhou, J. D. Marks, and E. V. Shusta. Identifying blood–brain-barrier selective single-chain antibody fragments. Biotechnol. J. 9:664–674, 2014.

    Google Scholar 

  15. Khazaeli, M. B., R. M. Conry, and A. F. LoBuglio. Human immune response to monoclonal antibodies. J. Immunother. 15:42–52, 1994.

    Google Scholar 

  16. Kiese, S., A. Papppenberger, W. Friess, and H. C. Mahler. Shaken, not stirred: mechanical stress testing of an IgG1 antibody. J. Pharm. Sci. 97:4347–4366, 2008.

    Google Scholar 

  17. Kulin, S., R. Kishore, J. B. Hubbard, and K. Helmerson. Real-time measurement of spontaneous antigen-antibody dissociation. Biophys. J . 83:1965–1973, 2002.

    Google Scholar 

  18. Kyriakos, R. J., L. B. Shih, G. L. Ong, K. Patel, D. M. Goldenberg, and M. J. Mattes. The fate of antibodies bound to the surface of tumor cells in vitro. Cancer Res. 52:835–842, 1992.

    Google Scholar 

  19. Le Basle, Y., P. Chennell, N. Tokhadze, A. Astier, and V. Sautou. Physicochemical stability of monoclonal antibodies: a review. J. Pharm. Sci. 109:169–190, 2020.

    Google Scholar 

  20. Leemans, A., M. De Schryver, W. Van der Gucht, A. Heykers, I. Pintelon, A. L. Hotard, M. L. Moore, J. A. Melero, J. S. McLellan, B. S. Graham, L. Broadbent, U. F. Power, G. Caljon, P. Cos, L. Maes, and P. Delputte. Antibody-induced internalization of the human respiratory syncytial virus fusion protein. J. Virol. 91:2017.

    Google Scholar 

  21. Li, Y., P. C. Liu, Y. Shen, M. D. Snavely, and K. Hiraga. A cell-based internalization and degradation assay with an activatable fluorescence-quencher probe as a tool for functional antibody screening. J. Biomol. Screen. 20:869–875, 2015.

    Google Scholar 

  22. Mason, J. T., and T. J. O’leary. Effects of formaldehyde fixation on protein secondary structure: a calorimetric and infrared spectroscopic investigation. J. Histochem. Cytochem. 39:225–229, 1991.

    Google Scholar 

  23. Mason, D. W., and A. F. Williams. The kinetics of antibody binding to membrane antigens in solution and at the cell surface. Biochem. J. 187:1–20, 1980.

    Google Scholar 

  24. Mathieson, T., H. Franken, J. Kosinski, N. Kurzawa, N. Zinn, G. Sweetman, D. Poeckel, V. S. Ratnu, M. Schramm, I. Becher, and M. Steidel. Systematic analysis of protein turnover in primary cells. Nat. Commun. 9:1–10, 2018.

    Google Scholar 

  25. Matzku, S., E. B. Bröcker, J. Brüggen, W. G. Dippold, and W. Tilgen. Modes of binding and internalization of monoclonal antibodies to human melanoma cell lines. Cancer Res. 46:3848–3854, 1986.

    Google Scholar 

  26. Mildmay-White, A., and W. Khan. Cell surface markers on adipose-derived stem cells: a systematic review. Curr. Stem Cell Res. Ther. 12:484–492, 2017.

    Google Scholar 

  27. Mosedale, D. E., J. C. Metcalfe, and D. J. Grainger. Optimization of immunofluorescence methods by quantitative image analysis. J. Histochem. Cytochem. 44:1043–1050, 1996.

    Google Scholar 

  28. Nielsen, U. B., D. B. Kirpotin, E. M. Pickering, D. C. Drummond, and J. D. Marks. A novel assay for monitoring internalization of nanocarrier coupled antibodies. BMC Immunol. 7:24, 2006.

    Google Scholar 

  29. Novak-Hofer, I., H. P. Amstutz, J. J. Morgenthaler, and P. A. Schubiger. Internalization and degradation of monoclonal antibody chCE7 by human neuroblastoma cells. Int. J. Cancer 57:427–432, 1994.

    Google Scholar 

  30. Nowak, C., J. K. Cheung, S. M. Dellatore, A. Katiyar, R. Bhat, J. Sun, G. Ponniah, A. Neill, B. Mason, A. Beck, and H. Liu. Forced degradation of recombinant monoclonal antibodies: a practical guide. MAbs 9:1217–1230, 2017.

    Google Scholar 

  31. Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybernet. B 9:62–66, 1979.

    Google Scholar 

  32. Qing, X., M. Pitashny, D. B. Thomas, F. J. Barrat, M. P. Hogarth, and C. Putterman. Pathogenic anti-DNA antibodies modulate gene expression in mesangial cells: involvement of HMGB1 in anti-DNA antibody-induced renal injury. Immunol. Lett. 121:61–73, 2008.

    Google Scholar 

  33. Roda, B., P. Reschiglian, A. Zattoni, F. Alviano, G. Lanzoni, R. Costa, A. Di Carlo, C. Marchionni, M. Franchina, L. Bonsi, and G. P. Bagnara. A tag-less method of sorting stem cells from clinical specimens and separating mesenchymal from epithelial progenitor cells. Cytom Part B Clin Cy 76:285–290, 2009.

    Google Scholar 

  34. Sarnik, S. A., B. A. Sutermaster, and E. M. Darling. Mass-added density modulation for sorting cells based on differential surface protein levels. Cytom. A 2020. https://doi.org/10.1002/cyto.a.24192.

    Article  Google Scholar 

  35. Schaffar, L., A. Dallanegra, J. P. Breittmayer, S. Carrel, and M. Fehlmann. Monoclonal antibody internalization and degradation during modulation of the CD3/T-cell receptor complex. Cell. Immunol. 116:52–59, 1988.

    Google Scholar 

  36. Sears, H. F., D. J. Bagli, D. Herlyn, E. DeFreitas, H. Suzuki, G. Steele, and H. Koprowski. Human immune response to monoclonal antibody administration is dose-dependent. Arch. Surg. 122:1384–1388, 1987.

    Google Scholar 

  37. Shih, L. B., S. R. Thorpe, G. L. Griffiths, H. Diril, G. L. Ong, H. J. Hansen, D. M. Goldenberg, and M. J. Mattes. The processing and fate of antibodies and their radiolabels bound to the surface of tumor cells in vitro: a comparison of nine radiolabels. J. Nucl. Med. 35:899–908, 1994.

    Google Scholar 

  38. Specht, E. A., E. Braselmann, and A. E. Palmer. A critical and comparative review of fluorescent tools for live-cell imaging. Annu. Rev. Physiol. 79:93–117, 2017.

    Google Scholar 

  39. St-Pierre, C. A., D. Leonard, S. Corvera, E. A. Kurt-Jones, and R. W. Finberg. Antibodies to cell surface proteins redirect intracellular trafficking pathways. Exp. Mol. Pathol. 91:723–732, 2011.

    Google Scholar 

  40. Trischitta, V., K. Y. Wong, A. Brunetti, R. Scalisi, R. Vigneri, and I. D. Goldfine. Endocytosis, recycling, and degradation of the insulin receptor. Studies with monoclonal antireceptor antibodies that do not activate receptor kinase. J. Biol. Chem. 264:5041–5046, 1989.

    Google Scholar 

  41. Trowbridge, I. S., and F. Lopez. Monoclonal antibody to transferrin receptor blocks transferrin binding and inhibits human tumor cell growth in vitro. PNAS 79:1175–1179, 1982.

    Google Scholar 

  42. Tsaltas, G., and C. H. Ford. Cell membrane antigen-antibody complex dissociation by the widely used glycine-HCL method: an unreliable procedure for studying antibody internalization. Immunol. Invest. 22:1–12, 1993.

    Google Scholar 

  43. Tsoukas, C. D., B. Landgraf, J. Bentin, M. Valentine, M. Lotz, J. H. Vaughan, and D. A. Carson. Activation of resting T lymphocytes by anti-CD3 (T3) antibodies in the absence of monocytes. J. Immunol. 135:1719–1723, 1985.

    Google Scholar 

  44. Wallberg, M., A. Recino, J. Phillips, D. Howie, M. Vienne, C. Paluch, M. Azuma, F. S. Wong, H. Waldmann, and A. Cooke. Anti-CD 3 treatment up-regulates programmed cell death protein-1 expression on activated effector T cells and severely impairs their inflammatory capacity. Immunology 151:248–260, 2017.

    Google Scholar 

  45. Wei, B., K. Berning, C. Quan, and Y. T. Zhang. Glycation of antibodies: modification, methods and potential effects on biological functions. MAbs 9:586–594, 2017.

    Google Scholar 

  46. Yokota, N., M. Hattori, T. Ohtsuru, M. Otsuji, S. Lyman, K. Shimomura, and N. Nakamura. Comparative clinical outcomes after intra-articular injection with adipose-derived cultured stem cells or noncultured stromal vascular fraction for the treatment of knee osteoarthritis. Am. J. Sports Med. 47:2577–2583, 2019.

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Ryan Dubay for creating the MATLAB image analysis script used in the study. Funding support was provided by NIH/NIAMS (R01 AR063642, EMD) and Brown University’s Undergraduate Teaching and Research Award (OWB).

Author Contributions

MED, OWB, and EMD designed all experiments. OWB conducted preliminary optimization experiments, initial antibody removal iterations, and antibody dilution/concentration experiments. MED carried out all remaining experiments and iterations as well as conducted final analysis and interpretation of data. MED and EMD wrote the manuscript with figure contributions from OWB.

Conflict of interest

Megan E. Dempsey, Olivia Woodford-Berry, and Eric M. Darling declare that they have no conflicts of interest.

Ethical Standards

No human or animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric M. Darling.

Additional information

Associate Editor Monica M. Burdick oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1178 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dempsey, M.E., Woodford-Berry, O. & Darling, E.M. Quantification of Antibody Persistence for Cell Surface Protein Labeling. Cel. Mol. Bioeng. 14, 267–277 (2021). https://doi.org/10.1007/s12195-021-00670-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-021-00670-3

Keywords

Navigation