Skip to main content
Log in

Targeting Dysfunctional Vascular Endothelial Cells Using Immunoliposomes Under Flow Conditions

  • Original Article
  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Introduction

Atherosclerosis (ATH), the build up of fat in the arteries, is a principal cause of heart attack and stroke. Drug instability and lack of target specificity are major drawbacks of current clinical therapeutics. These undesirable effects can be eliminated by site-specific drug delivery. The endothelial surface over ATH lesions has been shown to overexpress vascular cell adhesion molecule1 (VCAM1), which can be used for targeted therapy.

Methods

Here, we report the synthesis, characterization, and development of anti VCAM1-functionalized liposomes to target cells overexpressing VCAM1 under static and flow conditions. Liposomes were composed of dioleoyl-phosphatidylcholine, sphingomyelin, cholesterol, and distearoyl-phosphatidylethanolamine-polyethylene glycol-cyanur (31.67:31.67:31.67:5 mol%). VCAM1 expression in endothelial cells was induced by lipopolysaccharide (LPS) treatment.

Results

Characterization study revealed that liposomes were negatively charged (− 7.7 ± 2.6 mV) with an average diameter of 201.3 ± 3.3 nm. Liposomes showed no toxicity toward THP-1 derived macrophages and endothelial cells. Liposomes were able to target both fixed and non-fixed endothelial cells, in vitro, with significantly higher localization observed in non-fixed conditions. To mimic biological and physiologically-relevant conditions, liposome targeting was also examined under flow (4 dyn/cm2) with or without erythrocytes (40% v/v hematocrit). Liposomes were able to target LPS-treated endothelial cells under dynamic culture, in the presence or absence of erythrocytes, although targeting efficiency was five-fold lower in flow compared to static conditions.

Conclusions

This liposomal delivery system showed a significant improvement in localization on dysfunctional endothelium after surface functionalization. We conclude that VCAM1-functionalized liposomes can target and potentially deliver therapeutic compounds to ATH regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Abramoff, M. D., P. J. Magalhaes, and S. J. Ram. Image processing with ImageJ. Biophoton. Int. 11:36–42, 2004.

    Google Scholar 

  2. Ackers, I., and R. Malgor. Interrelationship of canonical and non-canonical Wnt signalling pathways in chronic metabolic diseases. Diabetes Vasc. Dis. Res. 15:3–13, 2018.

    Article  Google Scholar 

  3. Adib, A. A., S. Nazemidashtarjandi, A. Kelly, A. Kruse, K. Cimatu, A. E. David, and A. M. Farnoud. Engineered silica nanoparticles interact differently with lipid monolayers compared to lipid bilayers. Environ. Sci. Nano. 5:289–303, 2018.

    Article  Google Scholar 

  4. Bakker-Arkema, R. G., J. Best, R. Fayyad, T. M. Heinonen, A. D. Marais, J. W. Nawrocki, and D. M. Black. A brief review paper of the efficacy and safety of atorvastatin in early clinical trials. Atherosclerosis 131:17–23, 1997.

    Article  Google Scholar 

  5. Bendas, G., A. Krause, U. Bakowsky, J. Vogel, and U. Rothe. Targetability of novel immunoliposomes prepared by a new antibody conjugation technique. Int. J. Pharm. 181:79–93, 1999.

    Article  Google Scholar 

  6. Benjamin, E. J., P. Muntner, and M. S. Bittencourt. Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation. 139:e56–e528, 2019.

    Article  Google Scholar 

  7. Bhowmick, T., E. Berk, X. Cui, V. R. Muzykantov, and S. Muro. Effect of flow on endothelial endocytosis of nanocarriers targeted to ICAM-1. J Control Release 157:485–492, 2012.

    Article  Google Scholar 

  8. Bobryshev, Y. V. Monocyte recruitment and foam cell formation in atherosclerosis. Micron 37:208–222, 2006.

    Article  Google Scholar 

  9. Cao, Z., R. Tong, A. Mishra, W. Xu, G. C. Wong, J. Cheng, and Y. Lu. Reversible cell-specific drug delivery with aptamer-functionalized liposomes. Angew. Chem. Int. Ed. Engl. 48:6494–6498, 2009.

    Article  Google Scholar 

  10. Chen, W., E. Vucic, E. Leupold, W. J. Mulder, D. P. Cormode, K. C. Briley-Saebo, A. Barazza, E. A. Fisher, M. Dathe, and Z. A. Fayad. Incorporation of an apoE-derived lipopeptide in high-density lipoprotein MRI contrast agents for enhanced imaging of macrophages in atherosclerosis. Contrast Media Mol Imaging. 3:233–242, 2008.

    Article  Google Scholar 

  11. Cheung, L. S. L., and K. Konstantopoulos. An analytical model for determining two-dimensional receptor-ligand kinetics. Biophys. J. 100:2338–2346, 2011.

    Article  Google Scholar 

  12. Cybulsky, M. I., K. Iiyama, H. Li, S. Zhu, M. Chen, M. Iiyama, V. Davis, J. C. Gutierrez-Ramos, P. W. Connelly, and D. S. Milstone. A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. Eur. J. Clin. Investig. 107:1255–1262, 2001.

    Article  Google Scholar 

  13. Da Silva-Candal, A., T. Brown, V. Krishnan, I. Lopez-Loureiro, P. Ávila-Gómez, A. Pusuluri, A. Pérez-Díaz, C. Correa-Paz, P. Hervella, J. Castillo, and S. Mitragotri. Shape effect in active targeting of nanoparticles to inflamed cerebral endothelium under static and flow conditions. J Control Release 309:94–105, 2019.

    Article  Google Scholar 

  14. Date, A. A., M. D. Joshi, and V. B. Patravale. Parasitic diseases: liposomes and polymeric nanoparticles versus lipid nanoparticles. Adv. Drug Deliv. Rev. 59:505–521, 2007.

    Article  Google Scholar 

  15. Davies, M. J., J. L. Gordon, A. J. H. Gearing, R. Pigott, N. Woolf, D. Katz, and A. Kyriakopoulos. The expression of the adhesion molecules ICAM-1, VCAM-1, PECAM, and E-selectin in human atherosclerosis. Am. J. Pathol. 171:223–229, 1993.

    Article  Google Scholar 

  16. Deosarkar, S. P., R. Malgor, J. Fu, L. D. Kohn, J. Hanes, and D. J. Goetz. Polymeric particles conjugated with a ligand to VCAM-1 exhibit selective, avid, and focal adhesion to sites of atherosclerosis. Biotechnol. Biomed. Eng. 101:400–407, 2008.

    Google Scholar 

  17. Doll, R. Efficacy of cholesterol-lowering therapy in 18 686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet. 371:117–125, 2008.

    Article  Google Scholar 

  18. Elbahnasawy, M. A., L. R. Donius, E. L. Reinherz, and M. Kim. Co-delivery of a CD4 T cell helper epitope via covalent liposome attachment with a surface-arrayed B cell target antigen fosters higher affinity antibody responses. Vaccine. 36:6191–6201, 2018.

    Article  Google Scholar 

  19. Evans, E., and K. Kinoshita. Using force to probe single-molecule receptor–cytoskeletal anchoring beneath the surface of a living cell. Methods Cell Biol. 83:373–396, 2007.

    Article  Google Scholar 

  20. Farhood, H., N. Serbina, and L. Huang. The role of dioleoyl phosphatidylethanolamine in cationic liposome mediated gene transfer. Biochim. Biophys. Acta Biomembr. 1235:289–295, 1995.

    Article  Google Scholar 

  21. Finger, E. B., K. D. Purl, R. Alon, M. B. Lawrence, U. H. von Andrian, and T. A. Springer. Adhesion through L-selectin requires a threshold hydrodynamic shear. Nature 379:266, 1996.

    Article  Google Scholar 

  22. Galkina, E., and K. Ley. Immune and inflammatory mechanisms of atherosclerosis. Annu. Rev. Immunol. 27:165–197, 2009.

    Article  Google Scholar 

  23. Gosk, S., T. Moos, C. Gottstein, and G. Bendas. VCAM-1 directed immunoliposomes selectively target tumor vasculature in vivo. Biochim. Biophys. Acta. 1778:854–863, 2008.

    Article  Google Scholar 

  24. Gu, W., L. Yao, L. Li, J. Zhang, A. T. Place, R. D. Minshall, and G. Liu. ICAM-1 regulates macrophage polarization by suppressing MCP-1 expression via miR-124 upregulation. Oncotarget. 8:111882, 2017.

    Article  Google Scholar 

  25. Herd, J. A., M. S. West, C. Ballantyne, J. Farmer, and A. M. Gotto. Baseline characteristics of subjects in the lipoprotein and coronary atherosclerosis study (LCAS) with fluvastatin. Am. J. Cardiol. 73:D42–D49, 1994.

    Article  Google Scholar 

  26. Jung, J. J., K. A. Grayson, M. R. King, and K. A. Lamkin-Kennard. Isolating the influences of fluid dynamics on selectin-mediated particle rolling at venular junctional regions. Microvasc. Res. 118:144–154, 2018.

    Article  Google Scholar 

  27. Khodabandehlou, K., J. J. Masehi-Lano, C. Poon, J. Wang, and E. J. Chung. Targeting cell adhesion molecules with nanoparticles using in vivo and flow-based in vitro models of atherosclerosis. Exp Biol Med. 242:799–812, 2017.

    Article  Google Scholar 

  28. Konstantopoulos, K., and L. V. McIntire. Effects of fluid dynamic forces on vascular cell adhesion. J. Clin. Investig. 98:2661–2665, 1996.

    Article  Google Scholar 

  29. Lee, W., E. J. Yang, S. K. Ku, K. S. Song, and J. S. Bae. Anti-inflammatory effects of oleanolic acid on LPS-induced inflammation in vitro and in vivo. Inflammation 36:94–102, 2013.

    Article  Google Scholar 

  30. Malek, A. M., S. L. Alper, and S. Izumo. Hemodynamic shear stress and its role in atherosclerosis. Jama. 282:2035–2042, 1999.

    Article  Google Scholar 

  31. Mamot, C., D. C. Drummond, C. O. Noble, V. Kallab, Z. Guo, K. Hong, D. B. Kirpotin, and J. W. Park. Epidermal growth factor receptor-targeted immunoliposomes significantly enhance the efficacy of multiple anticancer drugs in vivo. J. Cancer Res. 65:11631–11638, 2005.

    Article  Google Scholar 

  32. McCarty, O. J., S. A. Mousa, P. F. Bray, and K. Konstantopoulos. Immobilized platelets support human colon carcinoma cell tethering, rolling, and firm adhesion under dynamic flow conditions. Blood. 96:1789–1797, 2000.

    Article  Google Scholar 

  33. Mlinar, L. B., E. J. Chung, E. A. Wonder, and M. Tirrell. Active targeting of early and mid-stage atherosclerotic plaques using self-assembled peptide amphiphile micelles. Biomaterials 35:8678–8686, 2014.

    Article  Google Scholar 

  34. Moore, K. J., F. J. Sheedy, and E. A. Fisher. Macrophages in atherosclerosis: a dynamic balance. Nat. Rev. Immunol. 13:709, 2013.

    Article  Google Scholar 

  35. Namiki, M., S. Kawashima, T. Yamashita, M. Ozaki, T. Hirase, T. Ishida, N. Inoue, K. I. Hirata, A. Matsukawa, R. Morishita, and Y. Kaneda. Local overexpression of monocyte chemoattractant protein-1 at vessel wall induces infiltration of macrophages and formation of atherosclerotic lesion: synergism with hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. 22:115–120, 2002.

    Article  Google Scholar 

  36. Ohsawa, T., H. Miura, and K. Harada. Improvement of encapsulation efficiency of water-soluble drugs in liposomes formed by the freeze-thawing method. Chem. Pharm. Bull. 33:3945–3952, 1985.

    Article  Google Scholar 

  37. Pagano, R. E., and J. N. Weinstein. Interactions of liposomes with mammalian cells. Annu. Rev. Biophys. Bioeng. 7:435–468, 1978.

    Article  Google Scholar 

  38. Pan, H., J. W. Myerson, L. Hu, J. N. Marsh, K. Hou, M. J. Scott, J. S. Allen, G. Hu, S. San Roman, G. M. Lanza, and R. D. Schreiber. Programmable nanoparticle functionalization for in vivo targeting. FASEB J. 27:255–264, 2013.

    Article  Google Scholar 

  39. Rubio-Guerra, A. F., H. Vargas-Robles, A. M. Serrano, G. Vargas-Ayala, L. Rodriguez-Lopez, and B. A. Escalante-Acosta. Correlation between the levels of circulating adhesion molecules and atherosclerosis in hypertensive type-2 diabetic patients. Clin. Exp. Hypertens. 32:308–310, 2010.

    Article  Google Scholar 

  40. Shirure, V. S., N. M. Reynolds, and M. M. Burdick. Mac-2 binding protein is a novel E-selectin ligand expressed by breast cancer cells. PLoS ONE. 7:e44529, 2012.

    Article  Google Scholar 

  41. Suk, J. S., Q. Xu, N. Kim, J. Hanes, and L. M. Ensign. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 99:28–51, 2016.

    Article  Google Scholar 

  42. Sun, T., R. Simmons, D. Huo, B. Pang, X. Zhao, C. W. Kim, H. Jo, and Y. Xia. Targeted delivery of Anti-miR-712 by VCAM1-Binding Au Nanospheres for Atherosclerosis Therapy. ChemNanoMat. 2:400–406, 2016.

    Article  Google Scholar 

  43. Tan, J., A. Thomas, and Y. Liu. Influence of red blood cells on nanoparticle targeted delivery in microcirculation. Soft Matter 8:1934–1946, 2012.

    Article  Google Scholar 

  44. Winter, P. M., A. M. Neubauer, S. D. Caruthers, T. D. Harris, J. D. Robertson, T. A. Williams, A. H. Schmieder, G. Hu, J. S. Allen, E. K. Lacy, and H. Zhang. Endothelial ανβ3 integrin-targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 26:2103–2109, 2006.

    Article  Google Scholar 

  45. Yoo, S. P., F. Pineda, J. C. Barrett, C. Poon, M. Tirrell, and E. J. Chung. Gadolinium-functionalized peptide amphiphile micelles for multimodal imaging of atherosclerotic lesions. ACS Omega 1:996–1003, 2016.

    Article  Google Scholar 

  46. Yoon, H. J., M. E. Moon, H. S. Park, S. Y. Im, and Y. H. Kim. Chitosan oligosaccharide (COS) inhibits LPS-induced inflammatory effects in RAW 264.7 macrophage cells. Biochem. Biophys. Res. Commun. 358:954–959, 2007.

    Article  Google Scholar 

  47. Zhu, L., M. Li, L. Wei, X. Liu, J. Yin, and Y. Gao. Fast fixing and comprehensive identification to help improve real-time ligands discovery based on formaldehyde crosslinking, immunoprecipitation and SDS-PAGE separation. Proteome Sci. 12:6, 2014.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by National Institutes of Health and the National Heart, Lung, and Blood Institute (NHLBI-R15HL133885) awarded to R.M. and A.F. We acknowledge the use of the Ohio University Heritage College Microscopy Core. The authors would like to thank Nicholas Cellars (Ohio University, Biomedical Engineering Program) and Nathan Reynolds (Ohio University, Translational Biomedical Science Program) for technical assistance.

Conflict of interest

Authors Mahsa Kheradmandi, Ian Ackers, Monica M. Burdick, Ramiro Malgor, and Amir M. Farnoud declare that they have no conflicts of interest.

Ethical Standards

No human and animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir M. Farnoud.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kheradmandi, M., Ackers, I., Burdick, M.M. et al. Targeting Dysfunctional Vascular Endothelial Cells Using Immunoliposomes Under Flow Conditions. Cel. Mol. Bioeng. 13, 189–199 (2020). https://doi.org/10.1007/s12195-020-00616-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-020-00616-1

Keywords

Navigation