Skip to main content
Log in

Optimization of Aqueous Biphasic Tumor Spheroid Microtechnology for Anti-cancer Drug Testing in 3D Culture

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Tumor spheroids are three-dimensional clusters of cancer cells that exhibit characteristics of poorly perfused tumors and hence present a relevant model for testing the efficacy of anti-cancer compounds. The use of spheroids for drug screening is hindered by technological complexities for high throughput generation of consistent size spheroids individually addressable by drug compounds. Here we present and optimize a simple spheroid technology based on the use of an aqueous two-phase system. Cancer cells confined in a drop of the denser aqueous dextran phase are robotically dispensed into a microwell containing the immersion aqueous polyethylene glycol phase. Cells remain within the drop and form a viable spheroid, without a need for any external stimuli. The size of resulting spheroids is sensitive to volume variations of dispensed drops from the air displacement pipetting head of a commercial liquid handling robot. Therefore, we parametrically optimize the process of dispensing of dextran phase drops. For a given cell density, this optimization reproducibly generates consistent size spheroids in standard 96-well plates. In addition, we evaluate the use of a commercial biochemical assay to examine cellular viability of cancer cell spheroids. Spheroids show a dose-dependent response to cisplatin similar to a monolayer culture. However unlike their two-dimensional counterpart, spheroids exhibit resistance to paclitaxel treatment. This technology, which uses only commercially-available reagents and equipment, can potentially expedite anti-cancer drug discovery. Although the use of robotics makes the ATPS spheroid technology particularly useful for drug screening applications, this approach is compatible with simpler liquid handling techniques such as manual micropipetting and offers a straightforward method of 3D cell culture in research laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

ATPS:

Aqueous two-phase system

3D:

Three-dimensional

PEG:

Polyethylene glycol

DEX:

Dextran

CCS:

Cancer cell spheroids

References

  1. Albertsson, P.-A., and F. Tjerneld. Phase diagrams. Methods Enzymol. 228:3–13, 1994.

    Article  Google Scholar 

  2. Andre, F., and C. C. Zielinski. Optimal strategies for the treatment of metastatic triple-negative breast cancer with currently approved agents. Ann. Oncol. 23(Suppl 6):46–51, 2012.

    Article  Google Scholar 

  3. Atefi, E., S. Lemmo, D. Fyffe, G. D. Luker, and H. Tavana. High throughput, polymeric aqueous two-phase printing of tumor spheroids. Adv. Func. Mater. 2014, in press (doi:10.1002/adfm.201401302).

  4. Blum, J. L., V. Dieras, P. M. Lo Russo, J. Horton, O. Rutman, et al. Multicenter, phase II study of capecitabine in taxane-pretreated metastatic breast carcinoma patients. Cancer 92:1759–1768, 2001.

    Article  Google Scholar 

  5. Byrski, T., T. Huzarski, R. Dent, J. Gronwald, D. Zuziak, et al. Response to neoadjuvant therapy with cisplatin in BRCA1-positive breast cancer patients. Breast Cancer Res. Treat. 115:359–363, 2009.

    Article  Google Scholar 

  6. Carlsson, J., and J. M. Yuhas. Liquid-overlay culture of cellular spheroids. Rec. Results Cancer Res. 95:1–23, 1984.

    Article  Google Scholar 

  7. Chen, H., S. A. Quandt, J. G. Grzywacz, and T. A. Arcury. A distribution-based multiple imputation method for handling bivariate pesticide data with values below the limit of detection. Environ. Health Persp. 119:351–356, 2011.

    Article  Google Scholar 

  8. Comerford, K. M., T. J. Wallace, J. Karhausen, N. A. Louis, M. C. Montalto, and S. P. Colgan. Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res. 62:3387–3394, 2002.

    Google Scholar 

  9. Corey, J. M., C. C. Gertz, T. J. Sutton, Q. Chen, K. B. Mycek, et al. Patterning N-type and S-type neuroblastoma cells with Pluronic F108 and ECM proteins. J. Biomed. Mater. Res. A 93:673–686, 2010.

    Google Scholar 

  10. Desoize, B., and J. Jardillier. Multicellular resistance: a paradigm for clinical resistance? Crit. Rev. Oncol. Hematol. 36:193–207, 2000.

    Article  Google Scholar 

  11. Desplats, P., B. Spencer, L. Crews, P. Pathel, D. Morvinski-Friedmann, et al. Alpha-synuclein induces alterations in adult neurogenesis in Parkinson disease models via p53-mediated repression of Notch1. J. Biol. Chem. 287:31691–31702, 2012.

    Article  Google Scholar 

  12. Frankel, A., R. Buckman, and R. S. Kerbel. Abrogation of taxol-induced G2-M arrest and apoptosis in human ovarian cancer cells grown as multicellular tumor spheroids. Cancer Res. 57:2388–2393, 1997.

    Google Scholar 

  13. Friedrich, J., C. Seidel, R. Ebner, and L. A. Kunz-Schughart. Spheroid-based drug screen: considerations and practical approach. Nat. Protoc. 4:309–324, 2009.

    Article  Google Scholar 

  14. Ghajar, C. M., and M. J. Bissell. Tumor engineering: the other face of tissue engineering. Tissue Eng. A 16:2153–2156, 2010.

    Article  Google Scholar 

  15. Hirschhaeuser, F., H. Menne, C. Dittfeld, J. West, W. Mueller-Klieser, and L. A. Kunz-Schughart. Multicellular tumor spheroids: an underestimated tool is catching up again. J. Biotechnol. 148:3–15, 2010.

    Article  Google Scholar 

  16. Holder, J. W., E. Elmore, and J. C. Barrett. Gap junction function and cancer. Cancer Res. 53:3475–3485, 1993.

    Google Scholar 

  17. Hsiao, A. Y., Y. C. Tung, C. H. Kuo, B. Mosadegh, R. Bedenis, et al. Micro-ring structures stabilize microdroplets to enable long term spheroid culture in 384 hanging drop array plates. Biomed. Microdev. 14:313–323, 2012.

    Article  Google Scholar 

  18. Hutmacher, D. W., D. Loessner, S. Rizzi, D. L. Kaplan, D. J. Mooney, and J. A. CClements. Can tissue engineering concepts advance tumor biology research? Trends Biotechnol. 28:125–133, 2010.

    Article  Google Scholar 

  19. Kelm, J. M., N. E. Timmins, C. J. Brown, M. Fussenegger, and L. K. Nielsen. Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechnol. Bioeng. 83:173–180, 2003.

    Article  Google Scholar 

  20. Kenny, P. A., G. Y. Lee, C. A. Myers, R. M. Neve, J. R. Semeiks, et al. The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression. Mol. Oncol. 1:84–96, 2007.

    Article  Google Scholar 

  21. Kerbel, R. S., B. St Croix, V. A. Florenes, and J. Rak. Induction and reversal of cell adhesion-dependent multicellular drug resistance in solid breast tumors. Hum. Cell 9:257–264, 1996.

    Google Scholar 

  22. Kim, T., I. Doh, and Y. H. Cho. On-chip three-dimensional tumor spheroid formation and pump-less perfusion culture using gravity-driven cell aggregation and balanced droplet dispensing. Biomicrofluidics 6:34107, 2012.

    Article  Google Scholar 

  23. Kobayashi, H., S. Man, C. H. Graham, S. J. Kapitain, B. A. Teicher, and R. S. Kerbel. Acquired multicellular-mediated resistance to alkylating agents in cancer. PNAS 90:3294–3298, 1993.

    Article  Google Scholar 

  24. Lemmo, S., S. Nasrollahi, and H. Tavana. Aqueous biphasic cancer cell migration assay enables robust, high-throughput screening of anti-cancer compounds. Biotechnol. J. 9:426–434, 2014.

    Article  Google Scholar 

  25. Mehta, G., A. Y. Hsiao, M. Ingram, G. D. Luker, and S. Takayama. Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy. J. Control. Release 164:192–204, 2012.

    Article  Google Scholar 

  26. Mueller-Klieser, W. Three-dimensional cell cultures: from molecular mechanisms to clinical applications. Am. J. Physiol. 273:C1109–C1123, 1997.

    Google Scholar 

  27. Napolitano, A. P., D. M. Dean, A. J. Man, J. Youssef, D. N. Ho, et al. Scaffold-free three-dimensional cell culture utilizing micromolded nonadhesive hydrogels. BioTechniques 43(494):96–500, 2007.

    Google Scholar 

  28. Olive, P. L., and R. E. Durand. Drug and radiation resistance in spheroids: cell contact and kinetics. Cancer Metast. Rev. 13:121–138, 1994.

    Article  Google Scholar 

  29. Petrak, D., E. Atefi, L. Yin, W. Chilian, and H. Tavana. Automated, spatio-temporally controlled cell microprinting with polymeric aqueous biphasic system. Biotechnol. Bioeng. 11:404–412, 2014.

    Article  Google Scholar 

  30. Rivera, E., and H. Gomez. Chemotherapy resistance in metastatic breast cancer: the evolving role of ixabepilone. Breast Cancer Res. 12(Suppl 2):S2, 2010.

    Article  Google Scholar 

  31. Seano, G., G. Chiaverina, P. A. Gagliardi, L. di Blasio, R. Sessa, et al. Modeling human tumor angiogenesis in a three-dimensional culture system. Blood 121:e129–e137, 2013.

    Article  Google Scholar 

  32. Silver, D. P., A. L. Richardson, A. C. Eklund, Z. C. Wang, Z. Szallasi, et al. Efficacy of neoadjuvant cisplatin in triple-negative breast cancer. J. Clin. Oncol. 28:1145–1153, 2010.

    Article  Google Scholar 

  33. Souza, G. R., J. R. Molina, R. M. Raphael, M. G. Ozawa, D. J. Stark, et al. Three-dimensional tissue culture based on magnetic cell levitation. Nat. Nanotechnol. 5:291–296, 2010.

    Article  Google Scholar 

  34. Sutherland, R. M., J. A. McCredie, and W. R. Inch. Growth of multicell spheroids in tissue culture as a model of nodular carcinomas. J. Nat. Cancer Inst. 46:113–120, 1971.

    Google Scholar 

  35. Tavana, H., A. Jovic, B. Mosadegh, Q. Y. Lee, X. Liu, et al. Nanolitre liquid patterning in aqueous environments for spatially defined reagent delivery to mammalian cells. Nat. Mater. 8:736–741, 2009.

    Google Scholar 

  36. Tavana, H., B. Mosadegh, and S. Takayama. Polymeric aqueous biphasic systems for non-contact cell printing on cells: engineering heterocellular embryonic stem cell niches. Adv. Mater. 22:2628–2631, 2010.

    Article  Google Scholar 

  37. Tavana, H., B. Mosadegh, P. Zamankhan, J. B. Grotberg, and S. Takayama. Microprinted feeder cells guide embryonic stem cell fate. Biotechnol. Bioeng. 108:2509–2516, 2011.

    Article  Google Scholar 

  38. Tavana, H., K. Kaylan, T. Bersano-Begey, K. E. Luker, G. D. Luker, and S. Takayama. Polymeric aqueous biphasic system rehydration facilitates high throughput cell exclusion patterning for cell migration studies. Adv. Funct. Mater. 21:2920–2926, 2011.

    Article  Google Scholar 

  39. Tekin, H., M. Anaya, M. D. Brigham, C. Nauman, R. Langer, and A. Khademhosseini. Stimuli-responsive microwells for formation and retrieval of cell aggregates. Lab Chip 10:2411–2418, 2010.

    Article  Google Scholar 

  40. Thode, H. C. Testing for normality. New York: CRC Press, 2002.

    Book  MATH  Google Scholar 

  41. Torisawa, Y. S., B. Mosadegh, G. D. Luker, M. Morell, K. S. O’Shea, and S. Takayama. Microfluidic hydrodynamic cellular patterning for systematic formation of co-culture spheroids. Integr. Biol. 1:649–654, 2009.

    Article  Google Scholar 

  42. Tung, Y. C., A. Y. Hsiao, S. G. Allen, Y. S. Torisawa, M. Ho, and S. Takayama. High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst 136:473–478, 2011.

    Article  Google Scholar 

  43. Vinci, M., S. Gowan, F. Boxall, L. Patterson, M. Zimmermann, et al. Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC Biol. 10:29, 2012.

    Article  Google Scholar 

  44. Wartenberg, M., F. Donmez, F. C. Ling, H. Acker, J. Hescheler, and H. Sauer. Tumor-induced angiogenesis studied in confrontation cultures of multicellular tumor spheroids and embryoid bodies grown from pluripotent embryonic stem cells. FASEB J. 15:995–1005, 2001.

    Article  Google Scholar 

  45. Wong, E. Y., and S. L. Diamond. Advancing microarray assembly with acoustic dispensing technology. Anal. Chem. 81:509–514, 2009.

    Article  Google Scholar 

  46. Xie, J., D. W. Li, X. W. Chen, F. Wang, and P. Dong. Expression and significance of hypoxia-inducible factor-1alpha and MDR1/P-glycoprotein in laryngeal carcinoma tissue and hypoxic Hep-2 cells. Oncol. Lett. 6:232–238, 2013.

    Google Scholar 

  47. Xie, Z., L. Cao, and J. Zhang. miR-21 modulates paclitaxel sensitivity and hypoxia-inducible factor-1alpha expression in human ovarian cancer cells. Oncol. Lett. 6:795–800, 2013.

    Google Scholar 

  48. Yamada, K. M., and E. Cukierman. Modeling tissue morphogenesis and cancer in 3D. Cell 130:601–610, 2007.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by a Grant from the National Institutes of Health R21CA182333.

Conflict of interest

Stephanie Lemmo, Ehsan Atefi, Gary D. Luker, and Hossein Tavana declare that they have no conflict of interest.

Ethical Standards

This work involved no human subjects or animal studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Tavana.

Additional information

Associate Editor Cynthia A. Reinhart-King oversaw the review of this article.

This paper is part of the 2014 Young Innovators Issue.

This paper is part of the 2014 Young Innovators Issue.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 320 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemmo, S., Atefi, E., Luker, G.D. et al. Optimization of Aqueous Biphasic Tumor Spheroid Microtechnology for Anti-cancer Drug Testing in 3D Culture. Cel. Mol. Bioeng. 7, 344–354 (2014). https://doi.org/10.1007/s12195-014-0349-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-014-0349-4

Keywords

Navigation