Skip to main content
Log in

Modeling of Alternate RNA Polymerase Sigma D Factor and Identification of Novel Inhibitors by Virtual Screening

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Tuberculosis is one of the deadliest threats to public health and is the cause of 2 million deaths with increasing number every year. The ability of Mycobacterium tuberculosis pathogen to adapt to intracellular stress needs regulation of complex gene expression mediated mainly by sigma factors. Sigma factors of Mycobacterium are RNA polymerase subunits; confer the DNA binding at specific promoter and aid in transcription initiation. The structure of probable RNA polymerase Sigma D factor protein, with 221 amino acid residues, was evaluated by applying comparative modeling (homology) techniques-considering RNA polymerase Sigma E factor of E. coli (PDB ID: 1OR7) as template. The 3D model generated is validated and active site cleft was identified. Lead molecules were identified by applying virtual screening studies using National cancer institute open database. The in silico ADME prediction revealed a set of novel inhibitor molecules targeting the Sigma D protein. The present studies help in identification of selective potent inhibitors which are safe and can act as anti-tuberculosis agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local alignment search tool. J. Mol. Biol. 215:403–410, 1990.

    Google Scholar 

  2. Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3389–3402, 1997.

    Article  Google Scholar 

  3. Bashyam, M. D., and S. E. Hasnain. The extracytoplasmic function sigma factors: role in bacterial pathogenesis. Infect. Genet. Evol. 4:301–308, 2004.

    Article  Google Scholar 

  4. Bhargavi, K., P. Kalyan Chaitanya, D. Ramasree, M. Vasavi, D. K. Murthy, and V. Uma. Homology modeling and docking studies of human Bcl-2L10 protein. J. Biomol. Struct. Dyn. 28:379–391, 2010.

    Article  Google Scholar 

  5. Bilimoria, K., A. Stewart, D. Winchester, and C. Ko. The National Cancer Data Base: a powerful initiative to improve cancer care in the United States. Ann. Surg. Oncol. 15:683–690, 2008.

    Article  Google Scholar 

  6. Browning, D. F., and S. J. Busby. The regulation of bacterial transcription initiation. Nat. Rev. Microbiol. 2:57–65, 2004.

    Article  Google Scholar 

  7. Campbell, E. A., O. Muzzin, M. Chlenov, J. L. Sun, C. A. Olson, O. Weinman, M. L. Trester-Zedlitz, and S. A. Darst. Structure of the bacterial RNA polymerase promoter specificity sigma subunit. Mol. Cell 9:527–539, 2002.

    Article  Google Scholar 

  8. Chen, I. J., and N. Foloppe. Drug-like bioactive structures and conformational coverage with the LigPrep/ConfGen suite: comparison to programs MOE and catalyst. J. Chem. Inf. Model. 50:822–839, 2010.

    Article  Google Scholar 

  9. Contreras-Moreira, B., and P. A. Bates. Domain fishing: a first step in protein comparative modelling. Bioinformatics 18:1141–1142, 2002.

    Article  Google Scholar 

  10. Daniels, D., P. Zuber, and R. Losick. Two amino acids in an RNA polymerase sigma factor involved in the recognition of adjacent base pairs in the −10 region of a cognate promoter. Proc. Natl. Acad. Sci. USA 87:8075–8079, 1990.

    Article  Google Scholar 

  11. de Castro, E., C. J. Sigrist, A. Gattiker, V. Bulliard, P. S. Langendijk-Genevaux, E. Gasteiger, A. Bairoch, and N. Hulo. ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res. 34:W362–W365, 2006.

    Article  Google Scholar 

  12. Friesner, R. A., R. B. Murphy, M. P. Repasky, L. L. Frye, J. R. Greenwood, T. A. Halgren, P. C. Sanschagrin, and D. T. Mainz. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein–ligand complexes. J. Med. Chem. 49:6177–6196, 2006.

    Article  Google Scholar 

  13. Gomez, J. E., J. M. Chen, and W. R. Bishai. Sigma factors of Mycobacterium tuberculosis. Tuber. Lung Dis. 78:175–183, 1997.

    Article  Google Scholar 

  14. Gruber, T. M., and C. A. Gross. Multiple sigma subunits and the partitioning of bacterial transcription space. Annu. Rev. Microbiol. 57:441–466, 2003.

    Article  Google Scholar 

  15. Gruber, T. M., D. Markov, M. M. Sharp, B. A. Young, C. Z. Lu, H. J. Zhong, I. Artsimovitch, K. M. Geszvain, T. M. Arthur, R. R. Burgess, R. Landick, K. Severinov, and C. A. Gross. Binding of the initiation factor sigma(70) to core RNA polymerase is a multistep process. Mol. Cell 8:21–31, 2001.

    Article  Google Scholar 

  16. Guex, N., and M. C. Peitsch. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723, 1997.

    Article  Google Scholar 

  17. Halgren, T. New method for fast and accurate binding-site identification and analysis. Chem. Biol. Drug Des. 69:146–148, 2007.

    Article  Google Scholar 

  18. Haydel, S. E., and J. E. Clark-Curtiss. The Mycobacterium tuberculosis TrcR response regulator represses transcription of the intracellularly expressed Rv1057 gene, encoding a seven-bladed beta-propeller. J. Bacteriol. 188:150–159, 2006.

    Article  Google Scholar 

  19. Helmann, J. D. The extracytoplasmic function (ECF) sigma factors. Adv. Microb. Physiol. 46:47–110, 2002.

    Article  Google Scholar 

  20. Helmann, J. D., and M. J. Chamberlin. Structure and function of bacterial sigma factors. Annu. Rev. Biochem. 57:839–872, 1988.

    Article  Google Scholar 

  21. Hett, E. C., and E. J. Rubin. Bacterial growth and cell division: a mycobacterial perspective. Microbiol. Mol. Biol. Rev. 72:126–156, 2008.

    Article  Google Scholar 

  22. Ihlenfeldt, W. D., J. H. Voigt, B. Bienfait, F. Oellien, and M. C. Nicklaus. Enhanced CACTVS browser of the open NCI database. J. Chem. Inf. Comput. Sci. 42:46–57, 2002.

    Article  Google Scholar 

  23. Ioakimidis, L., L. Thoukydidis, A. Mirza, S. Naeem, and J. Reynisson. Benchmarking the reliability of QikProp. Correlation between experimental and predicted values. QSAR Comb. Sci. 27:445–456, 2008.

    Article  Google Scholar 

  24. Jones, C. H., and C. P. Moran, Jr. Mutant sigma factor blocks transition between promoter binding and initiation of transcription. Proc. Natl. Acad. Sci. USA 89:1958–1962, 1992.

    Article  Google Scholar 

  25. Joo, D. M., N. Ng, and R. Calendar. A sigma32 mutant with a single amino acid change in the highly conserved region 2.2 exhibits reduced core RNA polymerase affinity. Proc. Natl. Acad. Sci. USA 94:4907–4912, 1997.

    Article  Google Scholar 

  26. Joo, D. M., A. Nolte, R. Calendar, Y. N. Zhou, and D. J. Jin. Multiple regions on the Escherichia coli heat shock transcription factor sigma32 determine core RNA polymerase binding specificity. J. Bacteriol. 180:1095–1102, 1998.

    Google Scholar 

  27. Jorgensen, W. L., D. S. Maxwell, and J. Tirado-Rives. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118:11225–11236, 1996.

    Article  Google Scholar 

  28. Jorgensen, W. L., and J. Tirado-Rives. The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc. 110:1657–1666, 1988.

    Article  Google Scholar 

  29. Juang, Y. L., and J. D. Helmann. Pathway of promoter melting by Bacillus subtilis RNA polymerase at a stable RNA promoter: effects of temperature, delta protein, and sigma factor mutations. Biochemistry 34:8465–8473, 1995.

    Article  Google Scholar 

  30. Kawatkar, S., H. Wang, R. Czerminski, and D. Joseph-McCarthy. Virtual fragment screening: an exploration of various docking and scoring protocols for fragments using Glide. J. Comput. Aided Mol. Des. 23:527–539, 2009.

    Article  Google Scholar 

  31. Kelley, L. A., and M. J. Sternberg. Protein structure prediction on the Web: a case study using the Phyre server. Nat. Protoc. 4:363–371, 2009.

    Article  Google Scholar 

  32. Kenney, T. J., K. York, P. Youngman, and C. P. Moran, Jr. Genetic evidence that RNA polymerase associated with sigma A factor uses a sporulation-specific promoter in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 86:9109–9113, 1989.

    Article  Google Scholar 

  33. Lambert, L. J., Y. Wei, V. Schirf, B. Demeler, and M. H. Werner. T4 AsiA blocks DNA recognition by remodeling sigma70 region 4. EMBO J. 23:2952–2962, 2004.

    Article  Google Scholar 

  34. Laskowski, R. A., M. W. MacArthur, D. S. Moss, and J. M. Thornton. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26:283–291, 1993.

    Article  Google Scholar 

  35. Laskowski, R. A., M. W. MacArthur, and J. M. Thornton. Validation of protein models derived from experiment. Curr. Opin. Struct. Biol. 8:631–639, 1998.

    Article  Google Scholar 

  36. Laskowski, R. A., J. A. Rullmannn, M. W. MacArthur, R. Kaptein, and J. M. Thornton. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8:477–486, 1996.

    Article  Google Scholar 

  37. Lill, M. A., and M. L. Danielson. Computer-aided drug design platform using PyMOL. J. Comput. Aided Mol. Des. 25:13–19, 2011.

    Article  Google Scholar 

  38. Lonetto, M. A., K. L. Brown, K. E. Rudd, and M. J. Buttner. Analysis of the Streptomyces coelicolor sigE gene reveals the existence of a subfamily of eubacterial RNA polymerase sigma factors involved in the regulation of extracytoplasmic functions. Proc. Natl. Acad. Sci. USA 91:7573–7577, 1994.

    Article  Google Scholar 

  39. Lonetto, M. A., V. Rhodius, K. Lamberg, P. Kiley, S. Busby, and C. Gross. Identification of a contact site for different transcription activators in region 4 of the Escherichia coli RNA polymerase sigma70 subunit. J. Mol. Biol. 284:1353–1365, 1998.

    Article  Google Scholar 

  40. Malhotra, A., E. Severinova, and S. A. Darst. Crystal structure of a sigma 70 subunit fragment from E. coli RNA polymerase. Cell 87:127–136, 1996.

    Article  Google Scholar 

  41. Malkhed, V., B. Gudlur, B. Kondagari, R. Dulapalli, and U. Vuruputuri. Study of interactions between Mycobacterium tuberculosis proteins: SigK and anti-SigK. J. Mol. Model. 17:1109–1119, 2011.

    Article  Google Scholar 

  42. Marchler-Bauer, A., S. Lu, J. B. Anderson, F. Chitsaz, M. K. Derbyshire, C. DeWeese-Scott, J. H. Fong, L. Y. Geer, R. C. Geer, N. R. Gonzales, M. Gwadz, D. I. Hurwitz, J. D. Jackson, Z. Ke, C. J. Lanczycki, F. Lu, G. H. Marchler, M. Mullokandov, M. V. Omelchenko, C. L. Robertson, J. S. Song, N. Thanki, R. A. Yamashita, D. Zhang, N. Zhang, C. Zheng, and S. H. Bryant. CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res. 39:D225–D229, 2010.

    Article  Google Scholar 

  43. Marti-Renom, M. A., A. C. Stuart, A. Fiser, R. Sanchez, F. Melo, and A. Sali. Comparative protein structure modeling of genes and genomes. Annu. Rev. Biophys. Biomol. Struct. 29:291–325, 2000.

    Article  Google Scholar 

  44. Murakami, K. S., and S. A. Darst. Bacterial RNA polymerases: the whole story. Curr. Opin. Struct. Biol. 13:31–39, 2003.

    Article  Google Scholar 

  45. Myers, E. W., and W. Miller. Optimal alignments in linear space. Comput. Appl. Biosci. 4:11–17, 1988.

    Google Scholar 

  46. Nguyen, L., and J. Pieters. Mycobacterial subversion of chemotherapeutic reagents and host defense tactics: challenges in tuberculosis drug development. Annu. Rev. Pharmacol. Toxicol. 49:427–453, 2009.

    Article  Google Scholar 

  47. Paget, M. S., and J. D. Helmann. The sigma70 family of sigma factors. Genome Biol. 4:203, 2003.

    Article  Google Scholar 

  48. Parish, T., D. A. Smith, S. Kendall, N. Casali, G. J. Bancroft, and N. G. Stoker. Deletion of two-component regulatory systems increases the virulence of Mycobacterium tuberculosis. Infect. Immun. 71:1134–1140, 2003.

    Article  Google Scholar 

  49. Raina, S., D. Missiakas, and C. Georgopoulos. The rpoE gene encoding the sigma E (sigma 24) heat shock sigma factor of Escherichia coli. EMBO J. 14:1043–1055, 1995.

    Google Scholar 

  50. Rajender, P. S., M. Vasavi, and U. Vuruputuri. Identification of novel selective antagonists for cyclin C by homology modeling and virtual screening. Int. J. Biol. Macromol. 48:292–300, 2011.

    Article  Google Scholar 

  51. Raman, S., R. Hazra, C. C. Dascher, and R. N. Husson. Transcription regulation by the Mycobacterium tuberculosis alternative sigma factor SigD and its role in virulence. J. Bacteriol. 186:6605–6616, 2004.

    Article  Google Scholar 

  52. Rodrigue, S., R. Provvedi, P. E. Jacques, L. Gaudreau, and R. Manganelli. The sigma factors of Mycobacterium tuberculosis. FEMS Microbiol. Rev. 30:926–941, 2006.

    Article  Google Scholar 

  53. Sali, A., and T. L. Blundell. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234:779–815, 1993.

    Article  Google Scholar 

  54. Sharp, M. M., C. L. Chan, C. Z. Lu, M. T. Marr, S. Nechaev, E. W. Merritt, K. Severinov, J. W. Roberts, and C. A. Gross. The interface of sigma with core RNA polymerase is extensive, conserved, and functionally specialized. Genes Dev. 13:3015–3026, 1999.

    Article  Google Scholar 

  55. Shi, J., T. L. Blundell, and K. Mizuguchi. FUGUE: sequence–structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J. Mol. Biol. 310:243–257, 2001.

    Article  Google Scholar 

  56. Sigrist, C. J., L. Cerutti, E. de Castro, P. S. Langendijk-Genevaux, V. Bulliard, A. Bairoch, and N. Hulo. PROSITE, a protein domain database for functional characterization and annotation. Nucleic Acids Res. 38:D161–D166, 2010.

    Article  Google Scholar 

  57. Sippl, M. J. Recognition of errors in three-dimensional structures of proteins. Proteins 17:355–362, 1993.

    Article  Google Scholar 

  58. Tatti, K. M., C. H. Jones, and C. P. Moran, Jr. Genetic evidence for interaction of sigma E with the spoIIID promoter in Bacillus subtilis. J. Bacteriol. 173:7828–7833, 1991.

    Google Scholar 

  59. Thompson, J. D., D. G. Higgins, and T. J. Gibson. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673–4680, 1994.

    Article  Google Scholar 

  60. Wiederstein, M., and M. J. Sippl. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 35:W407–W410, 2007.

    Article  Google Scholar 

  61. Wilbur, W. J., and D. J. Lipman. Rapid similarity searches of nucleic acid and protein data banks. Proc. Natl. Acad. Sci. USA 80:726–730, 1983.

    Article  Google Scholar 

  62. Zhang, Y., K. Post-Martens, and S. Denkin. New drug candidates and therapeutic targets for tuberculosis therapy. Drug Discov. Today 11:21–27, 2006.

    Article  Google Scholar 

Download references

Acknowledgments

The author Dr. V. M. is thankful to the University Grants Commission, New Delhi for the financial support for carrying out this work under the major research project scheme (UGC Project F. No. 34-302/2008(SR), dated: 24/12/2008). The author Dr. S. R. P. acknowledges the Department of Science and Technology (DST) for the financial support in pursuing the research work. The authors Dr. V. M., K. K. M. and Dr. S. R. P. thank the Head Department of Chemistry and the Principal, Nizam College for providing the facilities to carry out the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uma Vuruputuri.

Additional information

Associate Editor David J. Odde oversaw the review of this article.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malkhed, V., Mustyala, K.K., Potlapally, S.R. et al. Modeling of Alternate RNA Polymerase Sigma D Factor and Identification of Novel Inhibitors by Virtual Screening. Cel. Mol. Bioeng. 5, 363–374 (2012). https://doi.org/10.1007/s12195-012-0238-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-012-0238-7

Keywords

Navigation