Skip to main content
Log in

Fluorescence Resonance Energy Transfer (FRET)-based Detection of Profilin–VASP Interaction

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Profilins belong to a family of small G-actin binding proteins which are thought to assist in F-actin elongation at the leading edge of migrating cells through their interactions with a host of actin-binding proteins including Ena (enabled)/VASP (vasodilator stimulated phosphoprotein). Profilin’s interactions with the major actin regulators have been studied almost exclusively using biochemical methods. Therefore spatiotemporal features of these protein–protein interactions have not been resolved so far. In this paper, we for the first time demonstrate the feasibility of GFP-based fluorescence resonance energy transfer (FRET) technique to detect VASP’s interaction with profilin-1, a ubiquitously expressed member of profilin family of genes. Specifically, we performed acceptor photobleaching FRET in MDA-MB-231 breast cancer cells to show prominent VASP–Pfn1 interaction at the membrane ruffles near the leading edge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Bae, Y. H., Z. Ding, L. Zou, A. Wells, F. Gertler, and P. Roy. Loss of profilin-1 expression enhances breast cancer cell motility by Ena/VASP proteins. J. Cell. Physiol. 219(2):354–364, 2009.

    Article  Google Scholar 

  2. Bear, J. E., T. M. Svitkina, M. Krause, D. A. Schafer, J. J. Loureiro, G. A. Strasser, I. V. Maly, O. Y. Chaga, J. A. Cooper, G. G. Borisy, and F. B. Gertler. Antagonism between Ena/VASP proteins and actin filament capping regulates fibroblast motility. Cell 109(4):509–521, 2002.

    Article  Google Scholar 

  3. Buss, F., C. Temm-Grove, S. Henning, and B. M. Jockusch. Distribution of profilin in fibroblasts correlates with the presence of highly dynamic actin filaments. Cell Motil. Cytoskeleton 22:51–61, 1992.

    Article  Google Scholar 

  4. Ding, Z., A. Lambrechts, M. Parepally, and P. Roy. Silencing profilin-1 inhibits endothelial cell proliferation, migration and cord morphogenesis. J. Cell Sci. 119(Pt 19):4127–4137, 2006.

    Article  Google Scholar 

  5. Ding, Z., D. Gau, B. Deasy, A. Wells, and P. Roy. Both actin and polyproline interactions of profilin-1 are required for migration, invasion and capillary morphogenesis of vascular endothelial cells. Exp. Cell Res. 315(17):2963–2973, 2009.

    Article  Google Scholar 

  6. Ferron, F., G. Rebowski, S. H. Lee, and R. Dominguez. Structural basis for the recruitment of profilin-actin complexes during filament elongation by Ena/VASP. EMBO J. 26(21):4597–4606, 2007.

    Article  Google Scholar 

  7. Geese, M., J. J. Loureiro, J. E. Bear, J. Wehland, F. B. Gertler, and A. S. Sechi. Contribution of Ena/VASP proteins to intracellular motility of listeria requires phosphorylation and proline-rich core but not F-actin binding or multimerization. Mol. Biol. Cell 13(7):2383–2396, 2002.

    Article  Google Scholar 

  8. Jockusch, B. M., K. Murk, and M. Rothkegel. The profile of profilins. Rev. Physiol. Biochem. Pharmacol. 159:131–149, 2007.

    Article  Google Scholar 

  9. Karpova, T. S., C. T. Baumann, L. He, X. Wu, A. Grammer, P. Lipsky, G. L. Hager, and J. G. McNally. Fluorescence resonance energy transfer from cyan to yellow fluorescent protein detected by acceptor photobleaching using confocal microscopy and a single laser. J. Microsc. 209(Pt 1):56–70, 2003.

    Article  MathSciNet  Google Scholar 

  10. Lanier, L. M., M. A. Gates, W. Witke, A. S. Menzies, A. M. Wehman, J. D. Macklis, D. Kwiatkowski, P. Soriano, and F. B. Gertler. Mena is required for neurulation and commissure formation. Neuron 22(2):313–325, 1999.

    Article  Google Scholar 

  11. Li, Y., S. Grenklo, T. Higgins, and R. Karlsson. The profilin:actin complex localizes to sites of dynamic actin polymerization at the leading edge of migrating cells and pathogen-induced actin tails. Eur. J. Cell Biol. 87(11):893–904, 2008.

    Article  Google Scholar 

  12. Loisel, T. P., R. Boujemaa, D. Pantaloni, and M. F. Carlier. Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature 401:613–616, 1999.

    Article  Google Scholar 

  13. Mimuro, H., T. Suzuki, S. Suetsugu, H. Miki, T. Takenawa, and C. Sasakawa. Profilin is required for sustaining efficient intra- and intercellular spreading of Shigella flexneri. J. Biol. Chem. 275(37):28893–28901, 2000.

    Article  Google Scholar 

  14. Pollard, T. D., and G. G. Borisy. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112:453–465, 2003.

    Article  Google Scholar 

  15. Reinhard, M., K. Giehl, K. Abel, C. Haffner, T. Jarchau, V. Hoppe, B. M. Jockusch, and U. Walter. The proline-rich focal adhesion and microfilament protein VASP is a ligand for profilins. EMBO J. 14(8):1583–1589, 1995.

    Google Scholar 

  16. Rottner, K., B. Behrendt, J. V. Small, and J. Wehland. VASP dynamics during lamellipodia protrusion. Nat. Cell Biol. 1(5):321–322, 1999.

    Article  Google Scholar 

  17. Roy, P., and K. Jacobson. Overexpression of profilin reduces the migration of invasive breast cancer cells. Cell Motil. Cytoskeleton 57(2):84–95, 2004.

    Article  Google Scholar 

  18. Roy, P., Z. Rajfur, P. Pomorski, and K. Jacobson. Microscope-based techniques to study cell adhesion and migration. Nat. Cell Biol. 4(4):E91–E96, 2002.

    Article  Google Scholar 

  19. Sheetz, M. P., D. Felsenfeld, C. G. Galbraith, and D. Choquet. Cell migration as a five-step cycle. Biochem. Soc. Symp. 65:223–243, 1999.

    Google Scholar 

  20. Suetsugu, S., H. miki, and T. Takenawa. The essential role of profilin in the assembly of actin for microspike formation. EMBO J. 17(22):6516–6526, 1998.

    Article  Google Scholar 

  21. Witke, W. The role of profilin complexes in cell motility and other cellular processes. Trends Cell Biol. 14(8):461–469, 2004.

    Article  Google Scholar 

  22. Wittenmayer, N., M. Rothkegel, B. M. Jockusch, and K. Schluter. Functional characterization of green fluorescent protein-profilin fusion proteins. Eur. J. Biochem. 267(16):5247–5246, 2000.

    Article  Google Scholar 

  23. Zou, L., M. Jaramillo, D. Whaley, A. Wells, V. Panchapakesa, T. Das, and P. Roy. Profilin-1 is a negative regulator of mammary carcinoma aggressiveness. Br. J. Cancer 97(10):1361–1371, 2007.

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by a grant from the National Institute of Health (CA108607) to P.R. The authors wish to thank Marion Joy for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partha Roy.

Additional information

Associate Editor Edward Guo oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gau, D., Ding, Z., Baty, C. et al. Fluorescence Resonance Energy Transfer (FRET)-based Detection of Profilin–VASP Interaction. Cel. Mol. Bioeng. 4, 1–8 (2011). https://doi.org/10.1007/s12195-010-0133-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-010-0133-z

Keywords

Navigation