Skip to main content
Log in

Current-Controlled Electrical Point-Source Stimulation of Embryonic Stem Cells

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Stem cell therapy is emerging as a promising clinical approach for myocardial repair. However, the interactions between the graft and host, resulting in inconsistent levels of integration, remain largely unknown. In particular, the influence of electrical activity of the surrounding host tissue on graft differentiation and integration is poorly understood. In order to study this influence under controlled conditions, an in vitro system was developed. Electrical pacing of differentiating murine embryonic stem (ES) cells was performed at physiologically relevant levels through direct contact with microelectrodes, simulating the local activation resulting from contact with surrounding electroactive tissue. Cells stimulated with a charged balanced voltage-controlled current source for up to 4 days were analyzed for cardiac and ES cell gene expression using real-time PCR, immunofluorescent imaging, and genome microarray analysis. Results varied between ES cells from three progressive differentiation stages and stimulation amplitudes (nine conditions), indicating a high sensitivity to electrical pacing. Conditions that maximally encouraged cardiomyocyte differentiation were found with Day 7 EBs stimulated at 30 μA. The resulting gene expression included a sixfold increase in troponin-T and a twofold increase in β-MHC without increasing ES cell proliferation marker Nanog. Subsequent genome microarray analysis revealed broad transcriptome changes after pacing. Concurrent to upregulation of mature gene programs including cardiovascular, neurological, and musculoskeletal systems is the apparent downregulation of important self-renewal and pluripotency genes. Overall, a robust system capable of long-term stimulation of ES cells is demonstrated, and specific conditions are outlined that most encourage cardiomyocyte differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Beqqali, A., J. Kloots, D. Ward-van Oostwaard, C. Mummery, and R. Passier. Genome-wide transcriptional profiling of human embryonic stem cells differentiating to cardiomyocytes. Stem Cells 24:1957–1967, 2006.

    Article  Google Scholar 

  2. Boheler, K. R., J. Czyz, D. Tweedie, H.-T. Yang, S. V. Anisimov, and A. M. Wobus. Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circ. Res. 91:189–201, 2002.

    Article  Google Scholar 

  3. Cai, C.-L., X. Liang, Y. Shi, P.-H. Chu, S. L. Pfaff, J. Chen, and S. Evans. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev. Cell 5:877–889, 2003.

    Article  Google Scholar 

  4. Cao, F., S. Lin, X. Xie, P. Ray, M. Patel, X. Zhang, M. Drukker, S. Dylla, A. J. Connolly, X. Chen, I. L. Weissman, S. S. Gambhir, and J. C. Wu. In vivo visualization of embryonic stem cell survival, proliferation, and migration after cardiac delivery. Circulation 113:1005–1014, 2006.

    Article  Google Scholar 

  5. Chang, M. G., L. Tung, R. B. Sekar, C. Y. Chang, J. Cysyk, P. Dong, E. Marban, and R. Abraham. Proarrhythmic potential of mesenchymal stem cell transplantation revealed in an in vitro coculture model. Circulation 113:1832–1842, 2006.

    Article  Google Scholar 

  6. Chen, M. Q., X. Xie, R. Hollis Whittington, G. T. Kovacs, J. C. Wu, and L. Giovangrandi. Cardiac differentiation of embryonic stem cells with point-source electrical stimulation. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2008:1729–1732, 2008.

    Google Scholar 

  7. Donaldson, N. N., and P. E. K. Donaldson. When are actively balanced biphasic (‘Lilly’) stimulating pulses necessary in a neurological prosthesis? I. Historical background; Pt resting potential; Q studies. Med. Biol. Eng. Comput. 24:41–49, 1986.

    Article  MathSciNet  Google Scholar 

  8. Dowell, J. D., M. Rubart, K. B. Pasumarthi, M. H. Soonpaa, and L. J. Field. Myocyte and myogenic stem cell transplantation in the heart. Cardiovasc. Res. 58:336–350, 2003.

    Article  Google Scholar 

  9. Eiraku, M., A. Tohgo, K. Ono, M. Kaneko, K. Fujishima, T. Hirano, and M. Kengaku. DNER acts as a neuron-specific Notch ligand during Bergmann glial development. Nat. Neurosci. 8:873–880, 2005.

    Google Scholar 

  10. Hanna, L. A., R. K. Foreman, I. A. Tarasenko, D. S. Kessler, and P. A. Labosky. Requirement for Foxd3 in maintaining pluripotent cells of the early mouse embryo. Genes Dev. 16:2650–2661, 2002.

    Article  Google Scholar 

  11. Karlsson, O., S. Thor, T. Norberg, H. Ohlsson, and T. Edlund. Insulin gene enhancer binding protein Isl-1 is a member of a novel class of proteins containing both a homeo- and a Cys-His domain. Nature 344:879–882, 1990.

    Article  Google Scholar 

  12. Kehat, I., L. Khimovich, O. Caspi, A. Gepstein, R. Shofti, G. Arbel, I. Huber, J. Satin, J. Itskovitz-Eldor, and L. Gepstein. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat. Biotechnol. 22:1282–1289, 2004.

    Article  Google Scholar 

  13. Laugwitz, K.-L., A. Moretti, L. Caron, A. Nakano, and K. R. Chien. Islet1 cardiovascular progenitors: a single source for heart lineages? Development 135:193–205, 2008.

    Article  Google Scholar 

  14. Leon, L. J., and F. A. Roberge. A model study of extracellular stimulation of cardiac cells. IEEE Trans. Biomed. Eng. 40:1307–1319, 1993.

    Article  Google Scholar 

  15. Loeb, G. E., C. J. Zamin, J. H. Schulman, and P. R. Troyk. Injectable microstimulator for functional electrical stimulation. Med. Biol. Eng. Comput. 29:NS13–NS19, 1991.

    Article  Google Scholar 

  16. Loh, Y.-H., Q. Wu, J.-L. Chew, V. B. Vega, W. Zhang, X. Chen, G. Bourque, J. George, B. Leong, J. Liu, K.-Y. Wong, K. W. Sung, C. W. H. Lee, X.-D. Zhao, K.-P. Chiu, L. Lipovich, V. A. Kuznetsov, P. Robson, L. W. Stanton, C.-L. Wei, Y. Ruan, B. Lim, and H.-H. Ng. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat. Genet. 38:431–440, 2006.

    Article  Google Scholar 

  17. Maltsev, V. A., A. M. Wobus, J. Rohwedel, M. Bader, and J. Hescheler. Cardiomyocytes differentiated in vitro from embryonic stem cells developmentally express cardiac-specific genes and ionic currents. Circ. Res. 75:233–244, 1994.

    Google Scholar 

  18. Merrill, D. R., M. Bikson, and J. G. Jefferys. Electrical stimulation of excitable tissue: design of efficacious and safe protocol. J. Neurosci. Methods 141:171–198, 2005.

    Article  Google Scholar 

  19. Olson, E. N. Gene regulatory networks in the evolution and development of the heart. Science 313:1922–1927, 2006.

    Article  Google Scholar 

  20. Radisic, M., H. Park, H. Shing, T. Consi, F. J. Schoen, R. Langer, L. E. Freed, and G. Vunjak-Novakovic. Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc Natl Acad. Sci. USA 101:18129–18134, 2004.

    Article  Google Scholar 

  21. Rose, T. L., and L. S. Roblee. Electrical stimulation with Pt electrodes. VII. Electrochemically safe charge injection limits with 0.2 ms pulses. IEEE Trans. Biomed. Eng. 37:1118–1120, 1990.

    Article  Google Scholar 

  22. Sauer, H., G. Rahimi, J. Hescheler, and M. Wartenberg. Effects of electrical fields on cardiomyocyte differentiation of embryonic stem cells. J. Cell. Biochem. 75:710–723, 1999.

    Article  Google Scholar 

  23. Segers, V., and R. Lee. Stem-cell therapy for cardiac disease. Nature 451:937–942, 2008.

    Article  Google Scholar 

  24. Toyofuku, T., H. Zhang, A. Kumanogoh, N. Takegahara, M. Yabuki, K. Harada, M. Hori, and H. Kikutani. Guidance of myocardial patterning in cardiac development by Sema6D reverse signalling. Nat. Cell Biol. 6:1204–1211, 2004.

    Article  Google Scholar 

  25. Whittington, R. H., L. Giovangrandi, and G. T. A. Kovacs. A closed-loop electrical stimulation system for cardiac cell cultures. IEEE Trans. Biomed. Eng. 52:1261–1270, 2005.

    Article  Google Scholar 

  26. Wollert, K. C., and H. Drexler. Clinical application of stem cells for the heart. Circ. Res. 96:151–163, 2005.

    Article  Google Scholar 

  27. Yamada, M., K. Tanemura, S. Okada, A. Iwanami, M. Nakamura, H. Mizuno, M. Ozawa, R. Ohyama-Goto, N. Kitamura, M. Kawano, K. Tan-Takeuchi, C. Ohtsuka, A. Miyawaki, A. Takashima, M. Ogawa, Y. Toyama, H. Okano, and T. Kondo. Electrical stimulation modulates fate determination of differentiating embryonic stem cells. Stem Cells 25:562–570, 2007.

    Article  Google Scholar 

  28. Yang, D. H., and E. G. Moss. Temporally regulated expression of Lin-28 in diverse tissues of the developing mouse. Gene Expr. Patterns 3:719–726, 2003.

    Article  Google Scholar 

  29. Yang, L., M. H. Soonpaa, E. D. Adler, T. K. Roepke, S. J. Kattman, M. Kennedy, E. Henckaerts, K. Bonham, G. W. Abbott, R. M. Linden, L. J. Field, and G. M. Keller. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 453:524–528, 2008.

    Article  Google Scholar 

  30. Yoshida, Y., B. Han, M. Mendelsohn, and T. M. Jessell. PlexinA1 signaling directs the segregation of proprioceptive sensory axons in the developing spinal cord. Neuron 52:775–788, 2006.

    Article  Google Scholar 

  31. Yu, J., M. A. Vodyanik, K. Smuga-Otto, J. Antosiewicz-Bourget, J. L. Frane, S. Tian, J. Nie, G. A. Jonsdottir, V. Ruotti, R. Stewart, I. I. Slukvin, and J. A. Thomson. Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920, 2007.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank R. Hollis Whittington for his role in developing the stimulation microelectrode arrays, and Omer Inan, Mozziyar Etemadi, and Richard Wiard for their help in developing the electrical stimulation hardware. This work was supported in part by the California Institute for Regenerative Medicine (CIRM) through cooperative agreement RS1-00232-1 (GTAK), by the National Institutes of Health (NIH) grants R21HL089027, R21HL091453, R33HL089027, RC1HL100490 (JCW), the Burroughs Wellcome Fund Career Award for Medical Scientists (BWF CAMS; JCW), and by the National Science Foundation Graduate Student Research Fellowship (NSF-GSRF; MQC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Q. Chen.

Additional information

The first two authors have contributed equally to this work.

Electronic supplementary material

Below are the links to the electronic supplementary material.

Supplementary Table 1 (DOC 135 kb)

Supplementary Table 2 (DOC 96 kb)

Supplementary Table 3 (DOC 74 kb)

12195_2009_96_MOESM4_ESM.tif

Immunostaining of stimulated cells. Intermediate Stage ES cells stimulated at 30 μA for 4 days were trypsinized, lightly re-plated onto glass chamber slides, and imaged on a fluorescent microscope. Cardiomyocyte marker troponin-T, gap junction Cx43, and ES marker Oct4 were stained in green while nuclei were stained in blue (TIFF 2705 kb)

Supplementary Text file 1 (TXT 528 kb)

Supplementary Text file 2 (TXT 7 kb)

Supplementary Text file 3 (TXT 7 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, M.Q., Xie, X., Wilson, K.D. et al. Current-Controlled Electrical Point-Source Stimulation of Embryonic Stem Cells. Cel. Mol. Bioeng. 2, 625–635 (2009). https://doi.org/10.1007/s12195-009-0096-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-009-0096-0

Keywords

Navigation