Skip to main content
Log in

Characterization of the Concentration-Dependence of Solute Diffusivity and Partitioning in a Model Dextran–Agarose Transport System

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

This study reports experimental measurements of solute diffusivity and partition coefficient for various solute concentrations and gel porosities, and proposes novel constitutive relations to describe these observed values. The longer-term aim is to explore the theoretical ramifications of accommodating variations in diffusivity and partition coefficient with solute concentration and tissue porosity, and investigate whether they might suggest novel mechanisms not previously recognized in the field of solute transport in deformable porous media. The study implements a model transport system of agarose hydrogels to investigate the effect of solute concentration and hydrogel porosity on the transport of dextran polysaccharides. The proposed phenomenological constitutive relations are shown to provide better fits of experimental results than prior models proposed in the literature based on the microstructure of the gel. While these constitutive models were developed for the transport of dextran in agarose hydrogels, it is expected that they may also be applied to the transport of similar molecular weight solutes in other porous media. This quantification can assist in the application of biophysical models that describe biological transport in deformable tissues, as well as the cell cytoplasm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Albro, M. B., N. O. Chahine, M. Caligaris, V. I. Wei, M. Likhitpanichkul, K. W. Ng, C. T. Hung, and G. A. Ateshian. Osmotic loading of spherical gels: a biomimetic study of hindered transport in the cell protoplasm. J. Biomech. Eng. 129:503–510, 2007.

    Article  Google Scholar 

  2. Albro, M. B., N. O. Chahine, R. Li, K. Yeager, C. T. Hung, and G. A. Ateshian. Dynamic loading of deformable porous media can induce active solute transport. J. Biomech. 41:3152–3157, 2008.

    Article  Google Scholar 

  3. Albro, M. B., P.-H. Chao, C. T. Hung, and G. A. Ateshian. Partial volume recovery of chondrocytes upon osmotic loading explained by the cytoplasm’s passive steric exclusion of select solute species. Trans. Annu. Mtg. Orthop. Res. Soc. 32:151, 2007.

    Google Scholar 

  4. Anderson, J., and J. Brannon. Concentration dependence of the distribution coefficient for macromolecules in porous media. J. Polym. Sci. Polym. Phys. Ed. 19:405–421, 1981.

    Article  Google Scholar 

  5. Ateshian, G. A., M. Likhitpanichkul, and C. T. Hung. A mixture theory analysis for passive transport in osmotic loading of cells. J. Biomech. 39:464–475, 2006.

    Google Scholar 

  6. Bowen, R. M. Theory of Mixtures. New York: Academic Press, 1976.

    Google Scholar 

  7. Bowen, R. M. Incompressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 18:1129–1148, 1980.

    Article  MATH  Google Scholar 

  8. Brannon, J., and J. Anderson. Concentration effects on partitioning of dextrans and serum albumin in porous glass. J. Polym. Sci. 20:857–865, 1982.

    Google Scholar 

  9. Brinkman, H. C. A calculation of the viscous force exerted by a flowing fluid in a dense swarm of particles. Appl. Sci. Res. A 1:27–34, 1949.

    Article  MATH  Google Scholar 

  10. Buck, K. K. S., S. R. Dungan, and R. J. Phillips. The effect of solute concentration on hindered gradient diffusion in polymeric gels. J. Fluid Mech. 396:287–317, 1999.

    Article  MATH  Google Scholar 

  11. Crank, J. The Mathematics of Diffusion. London: Oxford University Press, 1956.

    MATH  Google Scholar 

  12. Deen, W. M. Hindered transport of large molecules in liquid-filled pores. AIChE J. 33:1409–1425, 1987.

    Article  Google Scholar 

  13. De Rosa, E., F. Urciuolo, C. Borselli, D. Gerbasio, G. Imparato, and P. A. Netti. Time and space evolution of transport properties in agarose-chondrocyte constructs. Tissue Eng. 12:2193–2201, 2006.

    Article  Google Scholar 

  14. Ferry, J. D. Statistical evaluation of sieve constants in ultrafiltration. J. Gen. Physiol. 20:95–104, 1936.

    Article  Google Scholar 

  15. Glandt, E. D. Density distribution of hard-spherical molecules inside small pores of various shapes. J. Colloid Interface Sci. 77:512–524, 1980.

    Article  Google Scholar 

  16. Gu, W. Y., W. M. Lai, and V. C. Mow. A mixture theory for charged-hydrated soft tissues containing multi-electrolytes: passive transport and swelling behaviors. J. Biomech. Eng. 120:169–180, 1998.

    Article  Google Scholar 

  17. Gu, W. Y., H. Yao, A. L. Vega, and D. Flagler. Diffusivity of ions in agarose gels and intervertebral disc: effect of porosity. Ann. Biomed. Eng. 32:1710–1717, 2004.

    Article  Google Scholar 

  18. Hoffmann, E. K., I. H. Lambert, and S. F. Pedersen. Physiology of cell volume regulation in vertebrates. Physiol. Rev. 89:193–277, 2009.

    Article  Google Scholar 

  19. Holmes, M. H., and V. C. Mow. The nonlinear characteristics of soft gels and hydrated connective tissues in ultrafiltration. J. Biomech. 23:1145–1156, 1990.

    Article  Google Scholar 

  20. Johannson, L., and J. E. Löfroth. Diffusion and interaction in gels and solutions. IV. Hard sphere Brownian dynamics simulations. J. Chem. Phys. 98:7471–7479, 1993.

    Article  Google Scholar 

  21. Johnson, E. M., D. A. Berk, R. K. Jain, and W. M. Deen. Diffusion and partitioning of proteins in charged agarose gels. Biophys. J. 68:1561–1568, 1995.

    Article  Google Scholar 

  22. Johnson, E. M., D. A. Berk, R. K. Jain, and W. M. Deen. Hindered diffusion in agarose gels: test of effective medium model. Biophys. J. 70:1017–1023, 1996.

    Article  Google Scholar 

  23. Johnson, E. M., and W. M. Deen. Hydraulic permeability of agarose gels. AIChE J. 42:1220–1224, 1996.

    Article  Google Scholar 

  24. Kedem, O., and A. Katchalsky. Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim. Biophys. Acta 27:229–246, 1958.

    Article  Google Scholar 

  25. Lai, W. M., J. S. Hou, and V. C. Mow. A triphasic theory for the swelling and deformation behaviors of articular cartilage. J. Biomech. Eng. 113:245–258, 1991.

    Article  Google Scholar 

  26. Lai, W. M., V. C. Mow, and V. Roth. Effects of nonlinear strain-dependent permeability and rate of compression on the stress behavior of articular cartilage. J. Biomech. Eng. 103:61–66, 1981.

    Article  Google Scholar 

  27. Laurent, T. C., and J. Killander. A theory of gel filtration and its experimental verification. J. Chromatogr. 14:317–330, 1964.

    Article  Google Scholar 

  28. Laurent, T. C., L. O. Sundelof, K. O. Wik, and B. Warmegard. Diffusion of dextran in concentrated solutions. Eur. J. Biochem. 68:95–102, 1976.

    Article  Google Scholar 

  29. Lazzara, M. J., D. Blankschtein, and W. M. Deen. Effects of multisolute steric interactions on membrane partition coefficients. J. Colloid Interface Sci. 226:112–122, 2000.

    Article  Google Scholar 

  30. Lazzara, M. J., and W. M. Deen. Effects of concentration on the partitioning of macromolecule mixtures in agarose gels. J. Colloid Interface Sci. 272:288–297, 2004.

    Article  Google Scholar 

  31. Lebrun, L., and G. A. Junter. Diffusion of sucrose and dextran through agar gel membranes. Enzyme Microb. Technol. 15:1057–1062, 1993.

    Article  Google Scholar 

  32. Leddy, H. A., H. A. Awad, and F. Guilak. Molecular diffusion in tissue-engineered cartilage constructs: effects of scaffold material, time, and culture conditions. J. Biomed. Mater. Res. B Appl. Biomater. 70:397–406, 2004.

    Article  Google Scholar 

  33. Lucio, A. D., R. A. Santos, and O. N. Mesquita. Measurements and modeling of water transport and osmoregulation in a single kidney cell using optical tweezers and videomicroscopy. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68:041906, 2003.

    Google Scholar 

  34. Mackie, J. S., and P. Meares. The diffusion of electrolytes in a cation-exchange resin. I. Theoretical. Proc. R. Soc. A 232:498–509, 1955.

    Article  Google Scholar 

  35. Mauck, R. L., C. T. Hung, and G. A. Ateshian. Modeling of neutral solute transport in a dynamically loaded porous permeable gel: implications for articular cartilage biosynthesis and tissue engineering. J. Biomech. Eng. 125:602–614, 2003.

    Article  Google Scholar 

  36. Mauck, R. L., S. B. Nicoll, S. L. Seyhan, G. A. Ateshian, and C. T. Hung. Synergistic action of growth factors and dynamic loading for articular cartilage tissue engineering. Tissue Eng. 9:597–611, 2003.

    Article  Google Scholar 

  37. Mauck, R. L., M. A. Soltz, C. C. Wang, D. D. Wong, P. H. Chao, W. B. Valhmu, C. T. Hung, and G. A. Ateshian. Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J. Biomech. Eng. 122:252–260, 2000.

    Article  Google Scholar 

  38. Mauck, R. L., C. C. Wang, E. S. Oswald, G. A. Ateshian, and C. T. Hung. The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading. Osteoarthritis Cartilage 11:879–890, 2003.

    Article  Google Scholar 

  39. Mow, V. C., S. C. Kuei, W. M. Lai, and C. G. Armstrong. Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. J. Biomech. Eng. 102:73–84, 1980.

    Article  Google Scholar 

  40. Nishijima, Y., and G. Oster. Diffusion in glycerol–water mixture. Bull. Chem. Soc. Jpn. 33:1649–1651, 1960.

    Article  Google Scholar 

  41. Ogston, A. G. The spaces in a uniform random suspension of fibres. Trans. Faraday Soc. 54:1754–1757, 1958.

    Article  Google Scholar 

  42. Ogston, A. G., and C. F. Phelps. The partition of solutes between buffer solutions and solutions containing hyaluronic acid. Biochem. J. 78:827–833, 1961.

    Google Scholar 

  43. Ogston, A. G., B. N. Preston, J. D. Wells, and J. M. Snowden. On the transport of compact particles through solutions of chain-polymers. Proc. R. Soc. Lond. A 333:297–316, 1973.

    Article  Google Scholar 

  44. Perry, P. A., M. A. Fitzgerald, and R. G. Gilbert. Fluorescence recovery after photobleaching as a probe of diffusion in starch systems. Biomacromolecules 7:521–530, 2006.

    Article  Google Scholar 

  45. Phillips, R. J., W. M. Deen, and J. F. Brady. Hindered transport of spherical macro-molecules in fibrous membranes and gels. AIChE J. 35:1761–1769, 1989.

    Article  Google Scholar 

  46. Pluen, A., P. A. Netti, R. K. Jain, and D. A. Berk. Diffusion of macromolecules in agarose gels: comparison of linear and globular configurations. Biophys. J. 77:542–552, 1999.

    Article  Google Scholar 

  47. Quinn, T., P. Kocian, and J. Meister. Static compression is associated with decreased diffusivity of dextrans in cartilage explants. Arch. Biochem. Biophys. 384:327–334, 2000.

    Article  Google Scholar 

  48. Sah, R. L., Y. J. Kim, J. Y. Doong, A. J. Grodzinsky, A. H. Plaas, and J. D. Sandy. Biosynthetic response of cartilage explants to dynamic compression. J. Orthop. Res. 7:619–636, 1989.

    Article  Google Scholar 

  49. Satterfield, C. N., C. K. Colton, B. Turckheim, and T. M. Copeland. Effect of concentration on partitioning of polystyrene within finely porous glass. AIChE J. 24:937–940, 1978.

    Article  Google Scholar 

  50. Shao, J., and R. E. Baltus. Effect of solute concentration on hindered diffusion is porous membranes. AIChE J. 46:1307–1316, 2000.

    Article  Google Scholar 

  51. Smith, III, F. G., and W. M. Deen. Electrostatic double-layer interactions for spherical colloids in cylindrical pores. J. Colloid Interface Sci. 78:444–465, 1980.

    Article  Google Scholar 

  52. Sofou, S., and J. L. Thomas. Stable adhesion of phospholipid vesicles to modified gold surfaces. Biosens. Bioelectron. 18:445–455, 2003.

    Article  Google Scholar 

  53. Tong, J., and J. L. Anderson. Partitioning and diffusion of proteins and linear polymers in polyacrylamide gels. Biophys. J. 70:1505–1513, 1996.

    Article  Google Scholar 

  54. Travascio, F., W. Zhao, and W. Y. Gu. Characterization of anisotropic diffusion tensor of solute in tissue by video-FRAP imaging technique. Ann. Biomed. Eng. 37:813–823, 2009.

    Article  Google Scholar 

  55. Truesdell, C., and R. Toupin. The Classical Field Theories. Heidelberg: Springer, 1960.

    Google Scholar 

  56. Xu, X., Z. Cui, and J. P. Urban. Measurement of the chondrocyte membrane permeability to Me2SO, glycerol and 1,2-propanediol. Med. Eng. Phys. 25:573–579, 2003.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported with funds from the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the US National Institutes of Health (AR 46532 and AR 52871).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael B. Albro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albro, M.B., Rajan, V., Li, R. et al. Characterization of the Concentration-Dependence of Solute Diffusivity and Partitioning in a Model Dextran–Agarose Transport System. Cel. Mol. Bioeng. 2, 295–305 (2009). https://doi.org/10.1007/s12195-009-0076-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-009-0076-4

Keywords

Navigation