Skip to main content
Log in

SVEIRS epidemic model with delays and partial immunization for internet worms

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

A delayed SVEIRS model for the transmission of worms in internet with partial immunization is proposed. The impact of the possible combination of the two delays on the model is investigated. By analyzing the corresponding characteristic equations and regarding the possible combination of the two delays as the bifurcation parameter, local stability of the endemic equilibrium and existence of local Hopf bifurcation at the viral equilibrium are addressed, respectively. Further, explicit formulas that determine direction and stability of the Hopf bifurcation are derived with the help of the normal form theory and the center manifold theorem. Finally, some numerical simulations are carried out to verify the obtained theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pastor-Satorras, R., Vespignani, A.: Evolution and structure of the internet: a statistical physics approach. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  2. Mishra, B.K., Keshri, N.: Mathematical model on the transmission of worms in wireless sensor network. Appl. Math. Model. 37, 4103–4111 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Xiao, X., Fu, P., Dou, C.S., Li, Q., Hu, G.W., Xia, S.T.: Design and analysis of SEIQR worm propagation model in mobile internet. Commun. Nonlinear Sci. Numer. Simul. 43, 341–350 (2017)

    Article  MathSciNet  Google Scholar 

  4. Mishra, B.K., Saini, D.K.: SEIRS epidemic model with delay for transmission of malicious objects in computer network. Appl. Math. Comput. 188, 1476–1482 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Mishra, B.K., Pandey, S.K.: Dynamic model of worms with vertical transmission in computer network. Appl. Math. Comput. 217, 8438–8446 (2011)

    MathSciNet  MATH  Google Scholar 

  6. Chen, T., Jamil, N.: Effectiveness of quarantine in worm epidemics. In: IEEE International Conference on Communications IEEE, pp. 2142–2147 (2006)

  7. Mishra, B.K., Jha, N.: SEIQRS model for the transmission of malicious objects in computer network. Appl. Math. Model. 34, 710–715 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Yao, Y., Guo, L., Guo, H., Yu, G., Gao, F., Tong, X.: Pulse quarantine strategy of internet worm propagation: modeling and analysis. Comput. Electr. Eng. 38, 1047–1061 (2012)

    Article  Google Scholar 

  9. Wang, F.W., Zhang, Y.K., Wang, C.G., Ma, J.F., Moon, S.J.: Stability analysis of a SEIQV epidemic model for rapid spreading worms. Comput. Secur. 29, 410–418 (2010)

    Article  Google Scholar 

  10. Peltomki, M., Ovaska, M., Alava, M.: Worm spreading with immunization: an interplay of spreading and immunity time scales. Phys. A 390, 4152–4159 (2011)

    Article  Google Scholar 

  11. Datta, S., Wang, H.: The effectiveness of vaccination on the spread of email-borne computer virus. In: IEEE CCECE/CCGEI, IEE, pp. 219–223 (2005)

  12. Mishra, B.K., Pandey, S.K.: Dynamic model of worm propagation in computer network. Appl. Math. Model. 38, 2173–2179 (2014)

    Article  MathSciNet  Google Scholar 

  13. Wang, F.W., Yang, Y., Zhao, D.M., Zhang, Y.K.: A worm defending model with partial immunization and its stability analysis. J. Commun. 10, 276–283 (2015)

    Article  Google Scholar 

  14. Yuan, S.L., Song, Y.L.: Stability and Hopf bifurcations in a delayed Leslie-Gower predator-prey system. J. Math. Anal. Appl. 355, 82–100 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Saha, T., Chakrabarti, C.: Dynamical analysis of a delayed ratio-dependent Holling–Tanner Predator–prey model. J. Math. Anal. Appl. 258, 389–402 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhang, J.F.: Bifurcation analysis of a modified Holling–Tanner predator–prey model with time delay. Appl. Math. Model. 36, 1219–1231 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ren, J.G., Yang, X.F., Yang, L.X., Xu, Y.H., Yang, F.Z.: A delayed computer virus propagation model and its dynamics. Chaos Solitons Fractals 45, 74–79 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Feng, L.P., Liao, X.F., Li, H.Q., Han, Q.: Hopf bifurcation analysis of a delayed viral infection model in computer networks. Math. Comput. Model. 56, 167–179 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dong, T., Liao, X. F., Li, H. Q.: Stability and Hopf bifurcation in a computer virus model with multistate antivirus. Abstr. Appl. Anal. 2012, Article ID 841987, 16 (2012)

  20. Yao, Y., Xie, X.W., Guo, H., Yu, G., Gao, F.X., Tong, X.J.: Hopf bifurcation in an Internet worm propagation model with time delay in quarantine. Math. Comput. Model. 57, 2635–2646 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu, J.: Hopf bifurcation in a delayed SEIQRS model for the transmission of mali-cious objects in computer network. J. Appl. Math. 2014, Article ID 492198, 8 (2014)

  22. Li, C. D., Hu, W. F., Huang, T. W.: Stability and bifurcation analysis of a modified epidemic model for computer viruses. Math. Probl. Eng. 2014, Article ID 784684, 14 (2014)

  23. Bianca, C., Ferrara, M., Gurrini, L.: The time delays’ effects on the qualitative behavior of an economic growth model. Abstr. Appl. Anal. 2013, Article ID 901014, 10 (2013)

  24. Meng, X.Y., Huo, H.F., Zhang, X.B., Xiang, H.: Stability and Hopf bifurcation in a three-species system with feedback delays. Nonlinear Dyn. 64, 349–364 (2011)

    Article  MathSciNet  Google Scholar 

  25. Meng, X.Y., Huo, H.F., Xiang, H.: Hopf bifurcation in a three-species system with delays. J. Appl. Math. Comput. 35, 635–661 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Deng, L.W., Wang, X.D., Peng, M.: Hopf bifurcation analysis for a ratio-dependent predator-prey system with two delays and stage structure for the predator. Appl. Math. Comput. 231, 214–230 (2014)

    MathSciNet  Google Scholar 

  27. Javidmanesh, E., Afsharnezhad, Z., Effati, S.: Existence and stability analysis of bifurcating periodic solutions in a delayed five-neuron BAM neural network model. Nonlinear Dyn. 72, 149–164 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Xu, C.J., Tang, X.H., Liao, M.X.: Stability and bifurcation analysis of a six-neuron BAM neural network model with discrete delays. Neurocomputing 74, 689–707 (2011)

    Article  Google Scholar 

  29. Sweilam, N.H., Khader, M.M., Mahdy, A.M.S.: Numerical studies for fractional-order Logistic differential equation with two different delays. J. Appl. Math. Article ID 764894, 14 (2012)

  30. Bhalekar, S., Daftardar-Gejji, V.: A predictor-corrector scheme for solving nonlinear delay dierential equations of fracctional order. J. Fract. Calc. Appl. 1, 1–9 (2011)

    Google Scholar 

  31. Evans, D.J., Raslan, K.R.: The Adomian decomposition method for solving delay differential equation. Int. J. Comput. Math. 82, 49–54 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Bildik, N., Deniz, S.: A new efficient method for solving delay differential equations and a comparison with other methods. Eur. Phys. J. Plus 132, 51 (2017)

    Article  Google Scholar 

  33. Bildik, N., Deniz, S.: Comparison of solutions of systems of delay differential equations using Taylor collocation method, Lambert W function and variational iteration method. Sci. Iran. Trans. D Comput. Sci. Eng. Electr. 22, 1052–1060 (2015)

    Google Scholar 

  34. Hassard, B.D., Kazarinoff, N.D., Wan, Y.H.: Theory and applications of Hopf bifurcation. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  35. Ferrara, M., Guerrini, L., Bisci, G.M.: Center manifold reduction and perturbation method in a delayed model with a mund-shaped cobb-douglas production function. Abstr. Appl. Anal. Article ID 738460, 6 (2013)

  36. Gori, L., Gurrini, L., Sodini, M.: Hopf bifurcation in a Cobweb model with discrete time delays. Discrete Dyn. Nat. Soc. Article ID 137090, 8 (2014)

  37. Bianca, C., Ferrara, M., Gurrini, L.: The Cai model with time delay: existence of periodic solutions and asymptotic analysis. Appl. Math. Inf. Sci. 7, 21–27 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the editor and the anonymous referees for their valuable comments and suggestions on the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zizhen Zhang.

Additional information

This research was supported by Natural Science Foundation of Anhui Province (Nos. 1608085QF145, 1608085QF151, 1708085MA17) and Natural Science Foundation of the Higher Education Institutions of Anhui Province (No. KJ2015A144).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Wang, Y. SVEIRS epidemic model with delays and partial immunization for internet worms. J. Appl. Math. Comput. 57, 333–358 (2018). https://doi.org/10.1007/s12190-017-1109-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-017-1109-0

Keywords

Navigation