Skip to main content
Log in

Positive solutions for singular Hadamard fractional differential system with four-point coupled boundary conditions

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we investigate the four-point coupled boundary value problem of nonlinear semipositone Hadamard fractional differential equations

$$\begin{aligned} D^\alpha u(t)\,+\,\lambda f(t,u(t),v(t))\!=\!0, \quad D^\beta v(t)\,+\,\lambda g(t,u(t),v(t))\!=\!0, \quad t\!\in \!(1,e),\quad \!\!\lambda \!>\!0,\\ u^{(j)}(1)\!=\!v^{(j)}(1)\!=\!0,\quad 0\!\le \! j\le n-2, \quad u(e)\!=\!av(\xi ),\quad v(e)\!=\!bu(\eta ), \quad \xi ,\eta \in (1,e), \end{aligned}$$

where \(\lambda ,a,b\) are three parameters with \(0<ab(\log \eta )^{\alpha -1}(\log \xi )^{\beta -1}<1\), \(\alpha ,\beta \in (n-1,n]\) are two real numbers and \(n\ge 3\), \(D^\alpha , D^\beta \) are the Hadamard fractional derivative of fractional order, and \(f,g\) are continuous and may be singular at \(t=0\) and \(t=1\). We firstly give the corresponding Green’s function for the boundary value problem and some of its properties. Moreover, by applying Guo-Krasnoselskii fixed point theorems, we derive an interval of \(\lambda \) such that any \(\lambda \) lying in this interval, the singular boundary value problem has at least one positive solution. As applications, two interesting examples are presented to illustrate the main results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Agarwal, R.P., O’Regan, D., Staněk, S.: Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations. J. Math. Anal. Appl. 371, 57–68 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ahmad, B., Alsaedi, A.: Existence and uniqueness of solutions for coupled systems of higher-order nonlinear fractional differential equations. Fixed Point Theory Appl. 2010, Art. ID 364560 (2010)

  3. Ahmad, B., Nieto, J.: Existence of solutions for nonlocal boundary value problems of higher-order nonlinear fractional differential equations. Abstr. Appl. Anal. 2009, Art. ID 494720 (2009)

  4. Ahmad, B., Nieto, J.: Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions. Comput. Math. Appl. 58, 1838–1843 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ahmad, B., Ntouyas, S.K.: Nonlinear fractional differential equations and inclusions of arbitrary order and multi-strip boundary conditions. Electron. J. Differ. Equ. 2012(98), 1–22 (2012)

    Article  MathSciNet  Google Scholar 

  6. Ahmad, B., Ntouyas, S.K.: On Hadamard fractional integro-differential boundary value problems. J. Appl. Math. Comput. (2014). doi:10.1007/s12190-014-0765-6

  7. Ahmad, B., Ntouyas, S.K.: A fully Hadamard type integral boundary value problem of a coupled system of fractional differential equations. Fract. Calc. Appl. Anal. 17, 348–360 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ahmad, B., Ntouyas, S.K., Alsaedi, A.: New results for boundary value problems of Hadamard-type fractional differential inclusions and integral boundary conditions. Bound. Value Probl. 2013, 275 (2013)

    Article  Google Scholar 

  9. Ahmad, B., Sivasundaram, S.: On four-point nonlocal boundary value problems of nonlinear integro-differential equations of fractional order. Appl. Math. Comput. 217, 480–487 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Butzer, P.L., Kilbas, A.A., Trujillo, J.J.: Compositions of Hadamard-type fractional integration operators and the semigroup property. J. Math. Anal. Appl. 269, 387–400 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Butzer, P.L., Kilbas, A.A., Trujillo, J.J.: Fractional calculus in the Mellin setting and Hadamard-type fractional integrals. J. Math. Anal. Appl. 269, 1–27 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Butzer, P.L., Kilbas, A.A., Trujillo, J.J.: Mellin transform analysis and integration by parts for Hadamard-type fractional integrals. J. Math. Anal. Appl. 270, 1–15 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cabada, A., Hamdi, Z.: Nonlinear fractional differential equations with integral boundary value conditions. Appl. Math. Comput. 228, 383–394 (2014)

    Article  MathSciNet  Google Scholar 

  14. Gambo, Y., et al.: On Caputo modification of the Hadamard fractional derivatives. Adv. Differ. Equ. 2014, 10 (2014)

    Article  MathSciNet  Google Scholar 

  15. Goodrich, C.: Existence of a positive solution to systems of differential equations of fractional order. Comput. Math. Appl. 62, 1251–1268 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  16. Guo, D., Lakshmikantham, V.: Nonlinear problems in abstract cones. Academic Press, New York (1988)

    MATH  Google Scholar 

  17. Henderson, J., Luca, R.: Positive solutions for a system of nonlocal fractional boundary value problems. Fract. Calc. Appl. Anal. 16, 985–1008 (2013)

    Article  MathSciNet  Google Scholar 

  18. Jarad, F., Abdeljawad, T., Baleanu, D.: Caputo-type modification of the Hadamard fractional derivatives. Adv. Differ. Equ. 2012, 142 (2012)

    Article  Google Scholar 

  19. Jia, Y., Zhang, X.: Positive solutions for a class of fractional differential equation multi-point boundary value problems with changing sign nonlinearity. J. Appl. Math. Comput. (2014). doi:10.1007/s12190-014-0758-5

    Google Scholar 

  20. Jiang, J., Liu, L., Wu, Y.: Positive solutions to singular fractional differential system with coupled boundary conditions. Commun. Nonlinear Sci. Numer. Simul. 18, 3061–3074 (2013)

    Article  MathSciNet  Google Scholar 

  21. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Boston (2006)

    MATH  Google Scholar 

  22. Li, C., Luo, X., Zhou, Y.: Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations. Comput. Math. Appl. 59, 1363–1375 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Li, S., et al.: Extremal solutions for \(p\)-Laplacian differential sytem via iterative computation. Appl. Math. Lett. 26, 1151–1158 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  24. Liu, S., Wang, G., Zhang, L.: Existence results for a coupled system of nonlinear neutral fractional differential equations. Appl. Math. Lett. 26, 1120–1124 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  25. Magin, R.L.: Fractional Calculus in Bioengineering. Begell House, West Redding (2006)

    Google Scholar 

  26. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  27. Rehman, M., Khan, R.: A note on boundary value problems for a coupled system of fractional differential equations. Comput. Math. Appl. 61, 2630–2367 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  28. Salem, H.: On the existence of continuous solutions for a singular system of nonlinear fractional differential equations. Appl. Math. Comput. 198, 445–452 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  29. Wang, J., Feěkan, M., Zhou, Y.: Nonexistence of periodic solutions and asymptotically periodic solutions for fractional differential equations. Commun. Nonlinear Sci. Numer. Simulat. 18, 3389–3405 (2013)

    Google Scholar 

  30. Wang, L., Zhang, X., Lu, X.: Existence and uniqueness of solutions for a singular system of higher-order nonlinear fractional differential equations with integral boundary conditions. Nonlinear Anal. Model. Control 18, 493–518 (2013)

    MATH  MathSciNet  Google Scholar 

  31. Yang, W.: Positive solutions for nonlinear Caputo fractional differential equations with integral boundary conditions. J. Appl. Math. Comput. 44, 39–59 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  32. Yang, W.: Positive solutions for a coupled system of nonlinear fractional differential equations with integral boundary conditions. Comput. Math. Appl. 63, 288–297 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  33. Yuan, C.: Two positive solutions for \((n-1,1)\)-type semipositone integral boundary value problems for coupled systems of nonlinear fractional differential equations. Commun. Nonlinear Sci. Numer. Simulat. 17, 930–942 (2012)

    Article  MATH  Google Scholar 

  34. Yuan, C., et al.: Multiple positive solutions to systems of nonlinear semipositone fractional differential equations with coupled boundary conditions. Electron. J. Qual. Theory Differ. Equ. 2012(13), 1–17 (2012)

    Article  Google Scholar 

  35. Zhang, X., Liu, L., Wu, Y.: The uniqueness of positive solution for a singular fractional differential system involving derivatives. Commun. Nonlinear Sci. Numer. Simul. 18, 1400–1409 (2013)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author sincerely thanks the editor and reviewers for their valuable suggestions and useful comments that have led to the present improved version of the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wengui Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W. Positive solutions for singular Hadamard fractional differential system with four-point coupled boundary conditions. J. Appl. Math. Comput. 49, 357–381 (2015). https://doi.org/10.1007/s12190-014-0843-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-014-0843-9

Keywords

Mathematics Subject Classification

Navigation