Skip to main content

Advertisement

Log in

Viral, genetic, and immune factors in the oncogenesis of adult T-cell leukemia/lymphoma

  • Progress in Hematology
  • T-cell lymphoma
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Adult T-cell leukemia/lymphoma (ATL) is a malignancy of mature CD4 + T cells induced by human T-cell leukemia virus type I (HTLV-1). HTLV-1 maintains life-long infection in the human host by clonal proliferation of infected cells and cell-to-cell spread of the virus. Two viral genes, tax and HTLV-1 bZIP factor (HBZ), promote expansion of infected cells through the important roles they play in acceleration of cell proliferation and protection from cell death. Long-term survival of infected clones in vivo causes genetic mutations and aberrant epigenetic changes to accumulate in host genes, resulting in the emergence of an ATL clone. Recent advances in sequencing technology have revealed the broad picture of genetic and transcriptional abnormalities in ATL cells. ATL cells have hyper-proliferative and anti-apoptotic signatures like those observed in other malignancies, but also notably have traits related to immune evasion. ATL cells exhibit a regulatory T-cell-like immuno-phenotype due to both the function of HBZ and mutation of several host genes, such as CCR4 and CIC. These findings suggest that immune evasion is a critical step in the oncogenesis of ATL, and thus novel therapies that activate anti-ATL/HTLV-1 immunity may be effective in the treatment and prevention of ATL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Gallo RC. The discovery of the first human retrovirus: HTLV-1 and HTLV-2. Retrovirology. 2005;2:17.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Takatsuki K. Discovery of adult T-cell leukemia. Retrovirology. 2005;2:16.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Matsuoka M, Yasunaga JI. Human T-cell leukemia virus type 1: replication, proliferation and propagation by Tax and HTLV-1 bZIP factor. Curr Opin Virol. 2013. https://doi.org/10.1016/j.coviro.2013.08.010.

    Article  PubMed  Google Scholar 

  4. Yasunaga JI. Strategies of human T-cell leukemia virus type 1 for persistent infection: implications for leukemogenesis of adult T-cell leukemia-lymphoma. Front Microbiol. 2020;11:979.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bangham CRM, Matsuoka M. Human T-cell leukaemia virus type 1: parasitism and pathogenesis. Philos Trans R Soc Lond B Biol Sci. 2017;372:20160272.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Laydon DJ, Sunkara V, Boelen L, Bangham CRM, Asquith B. The relative contributions of infectious and mitotic spread to HTLV-1 persistence. PLoS Comput Biol. 2020;16: e1007470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yoshie O, Fujisawa R, Nakayama T, Harasawa H, Tago H, Izawa D, et al. Frequent expression of CCR4 in adult T-cell leukemia and human T-cell leukemia virus type 1-transformed T cells. Blood. 2002;99:1505–11.

    Article  CAS  PubMed  Google Scholar 

  8. Sasaki H, Nishikata I, Shiraga T, Akamatsu E, Fukami T, Hidaka T, et al. Overexpression of a cell adhesion molecule, TSLC1, as a possible molecular marker for acute-type adult T-cell leukemia. Blood. 2005;105:1204–13.

    Article  CAS  PubMed  Google Scholar 

  9. Sugata K, Yasunaga J, Kinosada H, Mitobe Y, Furuta R, Mahgoub M, et al. HTLV-1 viral factor HBZ induces CCR4 to promote T-cell migration and proliferation. Cancer Res. 2016;76:5068–79.

    Article  CAS  PubMed  Google Scholar 

  10. Yoshie O, Matsushima K. CCR4 and its ligands: from bench to bedside. Int Immunol. 2015;27:11–20.

    Article  CAS  PubMed  Google Scholar 

  11. Matsuoka M, Jeang KT. Human T-cell leukaemia virus type 1 (HTLV-1) infectivity and cellular transformation. Nat Rev Cancer. 2007;7:270–80.

    Article  CAS  PubMed  Google Scholar 

  12. Tamiya S, Matsuoka M, Etoh K, Watanabe T, Kamihira S, Yamaguchi K, et al. Two types of defective human T-lymphotropic virus type I provirus in adult T-cell leukemia. Blood. 1996;88:3065–73.

    Article  CAS  PubMed  Google Scholar 

  13. Miyazaki M, Yasunaga J, Taniguchi Y, Tamiya S, Nakahata T, Matsuoka M. Preferential selection of human T-cell leukemia virus type 1 provirus lacking the 5’ long terminal repeat during oncogenesis. J Virol. 2007;81:5714–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Etoh K, Tamiya S, Yamaguchi K, Okayama A, Tsubouchi H, Ideta T, et al. Persistent clonal proliferation of human T-lymphotropic virus type I-infected cells in vivo. Can Res. 1997;57:4862–7.

    CAS  Google Scholar 

  15. Gillet NA, Malani N, Melamed A, Gormley N, Carter R, Bentley D, et al. The host genomic environment of the provirus determines the abundance of HTLV-1-infected T-cell clones. Blood. 2011;117:3113–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bushman FD. Retroviral insertional mutagenesis in humans: evidence for four genetic mechanisms promoting expansion of cell clones. Mol Ther. 2020;28:352–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Doi K, Wu X, Taniguchi Y, Yasunaga J, Satou Y, Okayama A, et al. Preferential selection of human T-cell leukemia virus type I provirus integration sites in leukemic versus carrier states. Blood. 2005;106:1048–53.

    Article  CAS  PubMed  Google Scholar 

  18. Rosewick N, Durkin K, Artesi M, Marcais A, Hahaut V, Griebel P, et al. Cis-perturbation of cancer drivers by the HTLV-1/BLV proviruses is an early determinant of leukemogenesis. Nat Commun. 2017;8:15264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Matsuo M, Ueno T, Monde K, Sugata K, Tan BJY, Rahman A, et al. Identification and characterization of a novel enhancer in the HTLV-1 proviral genome. Nat Commun. 2022;13:2405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fan J, Ma G, Nosaka K, Tanabe J, Satou Y, Koito A, et al. APOBEC3G generates nonsense mutations in human T-cell leukemia virus type 1 proviral genomes in vivo. J Virol. 2010;84:7278–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Katsuya H, Islam S, Tan BJY, Ito J, Miyazato P, Matsuo M, et al. The Nature of the HTLV-1 Provirus in Naturally Infected Individuals Analyzed by the Viral DNA-Capture-Seq Approach. Cell Rep. 2019;29(724–35): e4.

    Google Scholar 

  22. Boxus M, Twizere JC, Legros S, Dewulf JF, Kettmann R, Willems L. The HTLV-1 Tax interactome. Retrovirology. 2008;5:76.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yasunaga J, Matsuoka M. Molecular mechanisms of HTLV-1 infection and pathogenesis. Int J Hematol. 2011;94:435–42.

    Article  CAS  PubMed  Google Scholar 

  24. Harhaj EW, Giam CZ. NF-kappaB signaling mechanisms in HTLV-1-induced adult T-cell leukemia/lymphoma. FEBS J. 2018;285:3324–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Robek MD, Ratner L. Immortalization of CD4(+) and CD8(+) T lymphocytes by human T-cell leukemia virus type 1 Tax mutants expressed in a functional molecular clone. J Virol. 1999;73:4856–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kwon H, Ogle L, Benitez B, Bohuslav J, Montano M, Felsher DW, et al. Lethal cutaneous disease in transgenic mice conditionally expressing type I human T cell leukemia virus Tax. J Biol Chem. 2005;280:35713–22.

    Article  CAS  PubMed  Google Scholar 

  27. Sun SC, Yamaoka S. Activation of NF-kappaB by HTLV-I and implications for cell transformation. Oncogene. 2005;24:5952–64.

    Article  CAS  PubMed  Google Scholar 

  28. Currer R, Van Duyne R, Jaworski E, Guendel I, Sampey G, Das R, et al. HTLV tax: a fascinating multifunctional co-regulator of viral and cellular pathways. Front Microbiol. 2012;3:406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ho YK, Zhi H, Bowlin T, Dorjbal B, Philip S, Zahoor MA, et al. HTLV-1 tax stimulates ubiquitin E3 ligase, ring finger protein 8, to assemble lysine 63-linked polyubiquitin chains for TAK1 and IKK activation. PLoS Pathog. 2015;11: e1005102.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shibata Y, Tokunaga F, Goto E, Komatsu G, Gohda J, Saeki Y, et al. HTLV-1 tax induces formation of the active macromolecular IKK complex by generating Lys63- and Met1-linked hybrid polyubiquitin chains. PLoS Pathog. 2017;13: e1006162.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kinjo T, Ham-Terhune J, Peloponese JM Jr, Jeang KT. Induction of reactive oxygen species by human T-cell leukemia virus type 1 tax correlates with DNA damage and expression of cellular senescence marker. J Virol. 2010;84:5431–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhi H, Yang L, Kuo YL, Ho YK, Shih HM, Giam CZ. NF-kappaB hyper-activation by HTLV-1 tax induces cellular senescence, but can be alleviated by the viral anti-sense protein HBZ. PLoS Pathog. 2011;7: e1002025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Usui T, Yanagihara K, Tsukasaki K, Murata K, Hasegawa H, Yamada Y, et al. Characteristic expression of HTLV-1 basic zipper factor (HBZ) transcripts in HTLV-1 provirus-positive cells. Retrovirology. 2008;5:34.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mahgoub M, Yasunaga JI, Iwami S, Nakaoka S, Koizumi Y, Shimura K, et al. Sporadic on/off switching of HTLV-1 Tax expression is crucial to maintain the whole population of virus-induced leukemic cells. Proc Natl Acad Sci USA. 2018;115:E1269–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nosaka K, Matsuoka M. Adult T-cell leukemia-lymphoma as a viral disease: subtypes based on viral aspects. Cancer Sci. 2021;112:1688–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Satou Y, Yasunaga J, Yoshida M, Matsuoka M. HTLV-I basic leucine zipper factor gene mRNA supports proliferation of adult T cell leukemia cells. Proc Natl Acad Sci USA. 2006;103:720–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tanaka-Nakanishi A, Yasunaga J, Takai K, Matsuoka M. HTLV-1 bZIP factor suppresses apoptosis by attenuating the function of FoxO3a and altering its localization. Cancer Res. 2014;74:188–200.

    Article  CAS  PubMed  Google Scholar 

  38. Vernin C, Thenoz M, Pinatel C, Gessain A, Gout O, Delfau-Larue MH, et al. HTLV-1 bZIP factor HBZ promotes cell proliferation and genetic instability by activating OncomiRs. Cancer Res. 2014;74:6082–93.

    Article  CAS  PubMed  Google Scholar 

  39. Takiuchi Y, Kobayashi M, Tada K, Iwai F, Sakurada M, Hirabayashi S, et al. HTLV-1 bZIP factor suppresses TDP1 expression through inhibition of NRF-1 in adult T-cell leukemia. Sci Rep. 2017;7:12849.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Rushing AW, Hoang K, Polakowski N, Lemasson I. The Human T-Cell Leukemia Virus Type 1 Basic Leucine Zipper Factor Attenuates Repair of Double-Stranded DNA Breaks via Nonhomologous End Joining. J Virol. 2018; 92.

  41. Kasugai Y, Yoshida N, Ohshima K, Matsuo K, Seto M, Tsuzuki S. New mouse model of acute adult T-cell leukemia generated by transplantation of AKT, BCLxL, and HBZ-transduced T cells. Cancer Sci. 2016;107:1072–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nakagawa M, Shaffer AL 3rd, Ceribelli M, Zhang M, Wright G, Huang DW, et al. Targeting the HTLV-I-Regulated BATF3/IRF4 Transcriptional Network in Adult T Cell Leukemia/Lymphoma. Cancer Cell. 2018;34(286–97): e10.

    Google Scholar 

  43. Ma G, Yasunaga J, Matsuoka M. Multifaceted functions and roles of HBZ in HTLV-1 pathogenesis. Retrovirology. 2016;13:16.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Yasunaga JI, Matsuoka M. Oncogenic spiral by infectious pathogens: Cooperation of multiple factors in cancer development. Cancer Sci. 2018;109:24–32.

    Article  CAS  PubMed  Google Scholar 

  45. Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 2008;133:775–87.

    Article  CAS  PubMed  Google Scholar 

  46. Satou Y, Yasunaga J, Zhao T, Yoshida M, Miyazato P, Takai K, et al. HTLV-1 bZIP factor induces T-cell lymphoma and systemic inflammation in vivo. PLoS Pathog. 2011;7: e1001274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhao T, Satou Y, Sugata K, Miyazato P, Green PL, Imamura T, et al. HTLV-1 bZIP factor enhances TGF-beta signaling through p300 coactivator. Blood. 2011;118:1865–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tsukasaki K. Genetic instability of adult T-cell leukemia/lymphoma by comparative genomic hybridization analysis. J Clin Immunol. 2002;22:57–63.

    Article  CAS  PubMed  Google Scholar 

  49. Kataoka K, Nagata Y, Kitanaka A, Shiraishi Y, Shimamura T, Yasunaga J, et al. Integrated molecular analysis of adult T cell leukemia/lymphoma. Nat Genet. 2015;47:1304–15.

    Article  CAS  PubMed  Google Scholar 

  50. Kogure Y, Kameda T, Koya J, Yoshimitsu M, Nosaka K, Yasunaga JI, et al. Whole-genome landscape of adult T-cell leukemia/lymphoma. Blood. 2022;139:967–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yamagishi M, Kubokawa M, Kuze Y, Suzuki A, Yokomizo A, Kobayashi S, et al. Chronological genome and single-cell transcriptome integration characterizes the evolutionary process of adult T cell leukemia-lymphoma. Nat Commun. 2021;12:4821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Koya J, Saito Y, Kameda T, Kogure Y, Yuasa M, Nagasaki J, et al. Single-Cell Analysis of the Multicellular Ecosystem in Viral Carcinogenesis by HTLV-1. Blood Cancer Discov. 2021;2:450–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tan BJ, Sugata K, Reda O, Matsuo M, Uchiyama K, Miyazato P, et al. HTLV-1 infection promotes excessive T cell activation and transformation into adult T cell leukemia/lymphoma. J Clin Invest. 2021. https://doi.org/10.1172/JCI150472.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Nosaka K, Maeda M, Tamiya S, Sakai T, Mitsuya H, Matsuoka M. Increasing methylation of the CDKN2A gene is associated with the progression of adult T-cell leukemia. Cancer Res. 2000;60:1043–8.

    CAS  PubMed  Google Scholar 

  55. Yamagishi M, Nakano K, Miyake A, Yamochi T, Kagami Y, Tsutsumi A, et al. Polycomb-mediated loss of miR-31 activates NIK-dependent NF-kappaB pathway in adult T cell leukemia and other cancers. Cancer Cell. 2012;21:121–35.

    Article  CAS  PubMed  Google Scholar 

  56. Nakahata S, Ichikawa T, Maneesaay P, Saito Y, Nagai K, Tamura T, et al. Loss of NDRG2 expression activates PI3K-AKT signalling via PTEN phosphorylation in ATLL and other cancers. Nat Commun. 2014;5:3393.

    Article  PubMed  Google Scholar 

  57. Fujikawa D, Nakagawa S, Hori M, Kurokawa N, Soejima A, Nakano K, et al. Polycomb-dependent epigenetic landscape in adult T-cell leukemia. Blood. 2016;127:1790–802.

    Article  CAS  PubMed  Google Scholar 

  58. Nishikawa H, Maeda Y, Ishida T, Gnjatic S, Sato E, Mori F, et al. Cancer/testis antigens are novel targets of immunotherapy for adult T-cell leukemia/lymphoma. Blood. 2012;119:3097–104.

    Article  CAS  PubMed  Google Scholar 

  59. Harashima N, Kurihara K, Utsunomiya A, Tanosaki R, Hanabuchi S, Masuda M, et al. Graft-versus-Tax response in adult T-cell leukemia patients after hematopoietic stem cell transplantation. Cancer Res. 2004;64:391–9.

    Article  CAS  PubMed  Google Scholar 

  60. Sugiyama D, Nishikawa H, Maeda Y, Nishioka M, Tanemura A, Katayama I, et al. Anti-CCR4 mAb selectively depletes effector-type FoxP3+CD4+ regulatory T cells, evoking antitumor immune responses in humans. Proc Natl Acad Sci USA. 2013;110(44):17945–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kannagi M, Hasegawa A, Kinpara S, Shimizu Y, Takamori A, Utsunomiya A. Double control systems for human T-cell leukemia virus type 1 by innate and acquired immunity. Cancer Sci. 2011;102:670–6.

    Article  CAS  PubMed  Google Scholar 

  62. Suehiro Y, Hasegawa A, Iino T, Sasada A, Watanabe N, Matsuoka M, et al. Clinical outcomes of a novel therapeutic vaccine with Tax peptide-pulsed dendritic cells for adult T cell leukaemia/lymphoma in a pilot study. Br J Haematol. 2015;169:356–67.

    Article  CAS  PubMed  Google Scholar 

  63. Furukawa Y, Kubota R, Tara M, Izumo S, Osame M. Existence of escape mutant in HTLV-I tax during the development of adult T-cell leukemia. Blood. 2001;97:987–93.

    Article  CAS  PubMed  Google Scholar 

  64. Chiba M, Shimono J, Ishio T, Takei N, Kasahara K, Ogasawara R, et al. Genome-wide CRISPR screens identify CD48 defining susceptibility to NK cytotoxicity in peripheral T-cell lymphomas. Blood. 2022;140:1951–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yasuma K, Yasunaga J, Takemoto K, Sugata K, Mitobe Y, Takenouchi N, et al. HTLV-1 bZIP factor impairs anti-viral Immunity by Inducing Co-inhibitory Molecule, T cell immunoglobulin and ITIM domain (TIGIT). PLoS Pathog. 2016;12: e1005372.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Sharma S, Grandvaux N, Mamane Y, Genin P, Azimi N, Waldmann T, et al. Regulation of IFN regulatory factor 4 expression in human T cell leukemia virus-I-transformed T cells. J Immunol. 2002;169:3120–30.

    Article  CAS  PubMed  Google Scholar 

  67. Mitagami Y, Yasunaga J, Kinosada H, Ohshima K, Matsuoka M. Interferon-gamma promotes inflammation and development of T-cell lymphoma in HTLV-1 bZIP factor transgenic mice. PLoS Pathog. 2015;11: e1005120.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Higuchi Y, Yasunaga JI, Mitagami Y, Tsukamoto H, Nakashima K, Ohshima K, et al. HTLV-1 induces T cell malignancy and inflammation by viral antisense factor-mediated modulation of the cytokine signaling. Proc Natl Acad Sci USA. 2020;117:13740–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wright DG, Marchal C, Hoang K, Ankney JA, Nguyen ST, Rushing AW, et al. Human T-cell leukemia virus type-1-encoded protein HBZ represses p53 function by inhibiting the acetyltransferase activity of p300/CBP and HBO1. Oncotarget. 2016;7:1687–706.

    Article  PubMed  Google Scholar 

  70. Kawatsuki A, Yasunaga JI, Mitobe Y, Green PL, Matsuoka M. HTLV-1 bZIP factor protein targets the Rb/E2F-1 pathway to promote proliferation and apoptosis of primary CD4 T cells. Oncogene. 2016. https://doi.org/10.1038/onc.2015.510.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Clerc I, Polakowski N, Andre-Arpin C, Cook P, Barbeau B, Mesnard JM, et al. An interaction between the human T cell leukemia virus type 1 basic leucine zipper factor (HBZ) and the KIX domain of p300/CBP contributes to the down-regulation of tax-dependent viral transcription by HBZ. J Biol Chem. 2008;283:23903–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank Dr. Linda Kingsbury for proofreading. This study was supported by JSPS KAKENHI (Grant Number 20H03514), and Core-to-Core Program A, Advanced Research Networks. I apologize, in view of space and format limitations, for my failure to cover other examples and issues.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-ichirou Yasunaga.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest to be disclosed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yasunaga, Ji. Viral, genetic, and immune factors in the oncogenesis of adult T-cell leukemia/lymphoma. Int J Hematol 117, 504–511 (2023). https://doi.org/10.1007/s12185-023-03547-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-023-03547-5

Keywords

Navigation