Skip to main content

Advertisement

Log in

High numbers of programmed cell death-1-positive tumor infiltrating lymphocytes correlate with early onset of post-transplant lymphoproliferative disorder

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Post-transplant lymphoproliferative disorder (PTLD) is a life-threatening complication of transplantation. In addition to reactivation of Epstein–Barr virus in immunocompromised patients, impaired tumor immunity is suggested to be a risk factor for PTLD. However, it remains unclear whether immune suppressive tumor-infiltrating lymphocytes (TILs) correlate with the occurrence or prognosis of PTLD. We analyzed TILs in 26 patients with PTLD to elucidate the clinicopathological significance of the expression of PD-1 and FoxP3, which are associated with exhausted T-cells and regulatory T-cells (Tregs), respectively. Numbers of PD-1+ TILs in the PTLD specimens were significantly higher in patients who developed PTLD early after transplantation (P = 0.0040), while numbers of FoxP3+ TILs were not (P = 0.184). There was no difference in overall response rate regardless of the expression of PD-1 or FoxP3. FoxP3high patients tended to have a shorter time to progression compared with FoxP3low patients, especially in the case of FoxP3high patients with diffuse large B-cell lymphoma-subtype PTLD (P = 0.011), while PD-1high patients did not. These results suggest that T-cell exhaustion may be mainly associated with PTLD development, while immune suppression by Tregs may be dominant in enhanced progression of PTLD following disease occurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Penn I. Cancers complicating organ transplantation. N Engl J Med. 1990;323(25):1767–9.

    Article  CAS  PubMed  Google Scholar 

  2. Opelz G, Dohler B. Lymphomas after solid organ transplantation: a collaborative transplant study report. Am J Transplant. 2004;4(2):222–30.

    Article  PubMed  Google Scholar 

  3. Dierickx D, Tousseyn T, Sagaert X, Fieuws S, Wlodarska I, Morscio J, et al. Single-center analysis of biopsy-confirmed posttransplant lymphoproliferative disorder: incidence, clinicopathological characteristics and prognostic factors. Leuk Lymphoma. 2013;54(11):2433–40.

    Article  PubMed  Google Scholar 

  4. Ghobrial IM, Habermann TM, Macon WR, Ristow KM, Larson TS, Walker RC, et al. Differences between early and late posttransplant lymphoproliferative disorders in solid organ transplant patients: are they two different diseases? Transplantation. 2005;79(2):244–7.

    Article  PubMed  Google Scholar 

  5. Ferreiro JF, Morscio J, Dierickx D, Vandenberghe P, Gheysens O, Verhoef G, et al. EBV-positive and EBV-negative posttransplant diffuse large B cell lymphomas have distinct genomic and transcriptomic features. Am J Transplant. 2016;16(2):414–25.

    Article  PubMed  Google Scholar 

  6. Martinez OM, Krams SM. The immune response to Epstein Barr virus and implications for posttransplant lymphoproliferative disorder. Transplantation. 2017;101(9):2009–16.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kumar D, Xu ML. Microenvironment cell contribution to lymphoma immunity. Front Oncol. 2018;8:288.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Dierickx D, Habermann TM. Post-transplantation lymphoproliferative disorders in adults. N Engl J Med. 2018;378(6):549–62.

    Article  CAS  PubMed  Google Scholar 

  9. Nishimura H, Okazaki T, Tanaka Y, Nakatani K, Hara M, Matsumori A, et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Sci (NY, NY). 2001;291(5502):319–22.

    Article  CAS  Google Scholar 

  10. Ahmadzadeh M, Johnson LA, Heemskerk B, Wunderlich JR, Dudley ME, White DE, et al. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood. 2009;114(8):1537–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39(1):1–10.

    Article  PubMed  Google Scholar 

  12. Kiyasu J, Miyoshi H, Hirata A, Arakawa F, Ichikawa A, Niino D, et al. Expression of programmed cell death ligand 1 is associated with poor overall survival in patients with diffuse large B-cell lymphoma. Blood. 2015;126(19):2193–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Miyoshi H, Kiyasu J, Kato T, Yoshida N, Shimono J, Yokoyama S, et al. PD-L1 expression on neoplastic or stromal cells is respectively a poor or good prognostic factor for adult T-cell leukemia/lymphoma. Blood. 2016;128(10):1374–81.

    Article  CAS  PubMed  Google Scholar 

  14. Kawamoto K, Miyoshi H, Suzuki T, Kiyasu J, Yokoyama S, Sasaki Y, et al. Expression of programmed death ligand 1 is associated with poor prognosis in myeloid sarcoma patients. Hematol Oncol. 2018;36(3):591–9.

    Article  CAS  PubMed  Google Scholar 

  15. Sakaguchi S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol. 2005;6(4):345–52.

    Article  CAS  PubMed  Google Scholar 

  16. Morgan ME, van Bilsen JH, Bakker AM, Heemskerk B, Schilham MW, Hartgers FC, et al. Expression of FOXP3 mRNA is not confined to CD4+CD25+ T regulatory cells in humans. Hum Immunol. 2005;66(1):13–20.

    Article  CAS  PubMed  Google Scholar 

  17. Croci DO, Zacarias Fluck MF, Rico MJ, Matar P, Rabinovich GA, Scharovsky OG. Dynamic cross-talk between tumor and immune cells in orchestrating the immunosuppressive network at the tumor microenvironment. Cancer Immunol Immunother. 2007;56(11):1687–700.

    Article  PubMed  Google Scholar 

  18. deLeeuw RJ, Kost SE, Kakal JA, Nelson BH. The prognostic value of FoxP3+ tumor-infiltrating lymphocytes in cancer: a critical review of the literature. Clin Cancer Res. 2012;18(11):3022–9.

    Article  CAS  PubMed  Google Scholar 

  19. Styczynski J, Velden W, Fox CP, Engelhard D, Camara R, Cordonnier C, et al. Management of Epstein–Barr Virus infections and post-transplant lymphoproliferative disorders in patients after allogeneic hematopoietic stem cell transplantation: sixth European conference on infections in Leukemia (ECIL-6) guidelines. Haematologica. 2016;101(7):803–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Trappe RU, Choquet S, Dierickx D, Mollee P, Zaucha JM, Dreyling MH, et al. International prognostic index, type of transplant and response to rituximab are key parameters to tailor treatment in adults with CD20-positive B cell PTLD: clues from the PTLD-1 trial. Am J Transplant. 2015;15(4):1091–100.

    Article  CAS  PubMed  Google Scholar 

  21. Choquet S, Leblond V, Herbrecht R, Socie G, Stoppa AM, Vandenberghe P, et al. Efficacy and safety of rituximab in B-cell post-transplantation lymphoproliferative disorders: results of a prospective multicenter phase 2 study. Blood. 2006;107(8):3053–7.

    Article  CAS  PubMed  Google Scholar 

  22. Choquet S, Trappe R, Leblond V, Jager U, Davi F, Oertel S. CHOP-21 for the treatment of post-transplant lymphoproliferative disorders (PTLD) following solid organ transplantation. Haematologica. 2007;92(2):273–4.

    Article  PubMed  Google Scholar 

  23. Hans CP, Weisenburger DD, Greiner TC, Gascoyne RD, Delabie J, Ott G, et al. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood. 2004;103(1):275–82.

    Article  CAS  PubMed  Google Scholar 

  24. Cheson BD, Fisher RI, Barrington SF, Cavalli F, Schwartz LH, Zucca E, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and Non-Hodgkin lymphoma: the lugano classification. J Clin Oncol. 2014;32(27):3059–67.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kanda Y. Investigation of the freely available easy-to-use software “EZR” for medical statistics. Bone Marrow Transplant. 2013;48(3):452–8.

    Article  CAS  PubMed  Google Scholar 

  26. Lesokhin AM, Ansell SM, Armand P, Scott EC, Halwani A, Gutierrez M, et al. Nivolumab in patients with relapsed or refractory hematologic malignancy: preliminary results of a phase Ib study. J Clin Oncol. 2016;34(23):2698–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hegde PS, Karanikas V, Evers S. The where, the when, and the how of immune monitoring for cancer immunotherapies in the era of checkpoint inhibition. Clin Cancer Res. 2016;22(8):1865–74.

    Article  CAS  PubMed  Google Scholar 

  28. Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366(26):2455–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515(7528):568–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 2018;24(5):541–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell. 2017;168(4):707–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015;15(8):486–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Moran J, Dean J, De Oliveira A, O’Connell M, Riordan M, Connell J, et al. Increased levels of PD-1 expression on CD8 T cells in patients post-renal transplant irrespective of chronic high EBV viral load. Pediatr Transplant. 2013;17(8):806–14.

    Article  CAS  PubMed  Google Scholar 

  34. Marcelis L, Tousseyn T. The tumor microenvironment in post-transplant lymphoproliferative disorders. Cancer Microenviron. 2019;12(1):3–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jiang X, Wang J, Deng X, Xiong F, Ge J, Xiang B, et al. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol Cancer. 2019;18(1):10.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Nakayama S, Yokote T, Akioka T, Hiraoka N, Nishiwaki U, Miyoshi T, et al. Infiltration of effector regulatory T cells predicts poor prognosis of diffuse large B-cell lymphoma, not otherwise specified. Blood advances. 2017;1(8):486–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Berglund D, Kinch A, Edman E, Backlin C, Enblad G, Larsson E, et al. Expression of intratumoral forkhead box protein 3 in posttransplant lymphoproliferative disorders: clinical features and survival outcomes. Transplantation. 2015;99(5):1036–42.

    Article  CAS  PubMed  Google Scholar 

  38. Shaknovich R, Basso K, Bhagat G, Mansukhani M, Hatzivassiliou G, Murty VV, et al. Identification of rare Epstein–Barr virus infected memory B cells and plasma cells in non-monomorphic post-transplant lymphoproliferative disorders and the signature of viral signaling. Haematologica. 2006;91(10):1313–20.

    CAS  PubMed  Google Scholar 

  39. Morscio J, Dierickx D, Tousseyn T. Molecular pathogenesis of B-cell posttransplant lymphoproliferative disorder: what do we know so far? Clin Dev Immunol. 2013;2013:150835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cen H, Williams PA, McWilliams HP, Breinig MC, Ho M, McKnight JL. Evidence for restricted Epstein–Barr virus latent gene expression and anti-EBNA antibody response in solid organ transplant recipients with posttransplant lymphoproliferative disorders. Blood. 1993;81(5):1393–403.

    Article  CAS  PubMed  Google Scholar 

  41. Saito S, Suzuki K, Yoshimoto K, Kaneko Y, Yamaoka K, Shimizu T, et al. Restoration of decreased T Helper 1 and CD8+ T cell subsets is associated with regression of lymphoproliferative disorders developed during methotrexate treatment. Front Immunol. 2018;9:621.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Takanashi S, Aisa Y, Ito C, Arakaki H, Osada Y, Amano Y, et al. Clinical characteristics of methotrexate-associated lymphoproliferative disorders: relationship between absolute lymphocyte count recovery and spontaneous regression. Rheumatol Int. 2017;37(10):1629–33.

    Article  CAS  PubMed  Google Scholar 

  43. Tobinai K, Klein C, Oya N, Fingerle-Rowson G. A review of obinutuzumab (GA101), a novel type II anti-CD20 monoclonal antibody, for the treatment of patients with B-cell malignancies. Adv Ther. 2017;34(2):324–56.

    Article  CAS  PubMed  Google Scholar 

  44. Lipson EJBS, Moore J Jr, Jang S, Patel MJ, Zachary AA, Pardoll DM, Taube JM, Drake CG. Tumor regression and allograft rejection after administration of anti-PD-1. N Engl J Med. 2016;374(9):896–8.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wada F, Kondo T, Nakamura M, Chonabayashi K, Nishikori M, Hishizawa M, et al. Successful treatment of Hodgkin lymphoma-like EBV-associated post-transplant lymphoproliferative disorder following allogeneic hematopoietic stem cell transplantation with nivolumab. Ann Hematol. 2020;99(4):887–9.

    Article  PubMed  Google Scholar 

  46. Schecter JM, Hoehn D, Imus P, Alma E, Lentzsch S, Alobeid B, et al. Pathologic and clinical features of CD30+ post-transplant lymphoproliferative disorders: a large retrospective single institutional study. Blood. 2013;122(21):4333.

    Article  Google Scholar 

  47. Gandhi M, Ma S, Smith SM, Nabhan C, Evens AM, Winter JN, et al. Brentuximab vedotin (BV) plus rituximab (R) as frontline therapy for patients (Pts) with Epstein Barr Virus (EBV)+ and/or CD30+ lymphoma: phase I results of an ongoing phase I–II study. Blood. 2014;124(21):3096.

    Article  Google Scholar 

  48. Jacobsen ED, Sharman JP, Oki Y, Advani RH, Winter JN, Bello CM, et al. Brentuximab vedotin demonstrates objective responses in a phase 2 study of relapsed/refractory DLBCL with variable CD30 expression. Blood. 2015;125(9):1394–402.

    Article  CAS  PubMed  Google Scholar 

  49. Sehn LH, Herrera AF, Flowers CR, Kamdar MK, McMillan A, Hertzberg M, et al. Polatuzumab vedotin in relapsed or refractory diffuse large B-cell lymphoma. J Clin Oncol. 2020;38(2):155–65.

    Article  CAS  PubMed  Google Scholar 

  50. Zimmermann H, Trappe RU. Therapeutic options in post-transplant lymphoproliferative disorders. Ther Adv Hematol. 2011;2(6):393–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Japan Society for the Promotion of Science (KAKENHI grant no. 19K07450).

Author information

Authors and Affiliations

Authors

Contributions

Contribution: H. Saito, HM, H. Shibayama, MS, and K.Ohshima were responsible for study conception and design; H. Saito, HM, and K. Ohshima performed collection and assembly of data; JT, SK, MI, JF, KF, TM, MM, K. Oritani, and TY performed collection of data; H. Saito, HM, H. Shibayama, MS, TY, YK, NH, and K. Ohshima analyzed and interpreted data, and wrote the manuscript; and all authors approved the final manuscript.

Corresponding author

Correspondence to Hirohiko Shibayama.

Ethics declarations

Conflict of interest

None of the authors has a relevant conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saito, H., Miyoshi, H., Shibayama, H. et al. High numbers of programmed cell death-1-positive tumor infiltrating lymphocytes correlate with early onset of post-transplant lymphoproliferative disorder. Int J Hematol 114, 53–64 (2021). https://doi.org/10.1007/s12185-021-03129-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-021-03129-3

Keywords

Navigation