Skip to main content
Log in

Genomic characterization and prognostication applied to a Brazilian cohort of patients with myelofibrosis

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Genomic characterization of patients with myeloproliferative neoplasms (MPN) may lead to better diagnostic classification, prognostic assessment, and treatment decisions. These goals are particularly important in myelofibrosis (MF). We performed target Next Generation Sequencing for a panel of 255 genes and Chromosome Microarray Analysis (CMA) in 27 patients with MF. Patients were classified according to genomic findings and we compared the performance of a personalized prognostication system with IPSS, MIPSS70 and MIPSS70 + v2. Twenty-six patients presented mutations: 11.1% had single driver mutations in either JAK2, CALR or MPL; 85.2% had mutations in non-restricted genes (median: 2 per patient). CMA was abnormal in 91.7% of the 24 cases with available data. Copy-Number-Neutral Loss-of-Heterozygosity was the most common finding (66.7%). Del13q was the most frequent copy number variation, and we could define a 2.4 Mb minimally affected region encompassing RB1, SUCLA2 and CLLS2 loci. The largest genomic subgroup consisted of patients with mutations in genes involved with chromatin organization and splicing control (40.7%) and the personalized system showed better concordance and accuracy than the other prognostic systems. Comprehensive genomic characterization reveals the striking genetic complexity of MF and, when combined with clinical data, led, in our cohort, to better prognostication performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tefferi A. Myelofibrosis with myeloid metaplasia. N Engl J Med. 2000;342:1255–65.

    CAS  PubMed  Google Scholar 

  2. Vainchenker W, Kralovics R. Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms. Blood. 2017;129:667–79.

    CAS  PubMed  Google Scholar 

  3. Tefferi A, Lasho TL, Finke CM, Knudson a R, Ketterling R, Hanson CH, et al. CALR vs JAK2 vs MPL-mutated or triple-negative myelofibrosis: clinical, cytogenetic and molecular comparisons. Leukemia. 2014;28:1472–7.

    CAS  PubMed  Google Scholar 

  4. Rumi E, Pietra D, Pascutto C, Guglielmelli P, Martínez-Trillos A, Casetti I, et al. Clinical effect of driver mutations of JAK2, CALR, or MPL in primary myelofibrosis. Blood. 2014;124:1062–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Nangalia J, Green AR. Myeloproliferative neoplasms: from origins to outcomes. Blood. 2017;130:2475–83.

    CAS  PubMed  Google Scholar 

  6. Grinfeld J, Nangalia J, Green AR. Molecular determinants of pathogenesis and clinical phenotype in myeloproliferative neoplasms. Haematologica. 2017;102:7–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Pontus L, Axel K. Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood. 2014;123:2220–8.

    Google Scholar 

  8. Tefferi A, Mesa RA, Schroeder G, Hanson CA, Li CY, Dewald GW. Cytogenetic findings and their clinical relevance in myelofibrosis with myeloid metaplasia. Br J Haematol. 2001;113:763–71.

    CAS  PubMed  Google Scholar 

  9. De Paula Junior MR, Nonino A, Nascimento JM, Bonadio RS, Pic-Taylor A, De Oliveira SF, et al. High frequency of copy-neutral loss of heterozygosity in patients with myelofibrosis. Cytogenet Genome Res. 2018;154:62–70.

    Google Scholar 

  10. Kralovics R, Guan Y, Prchal JT. Acquired uniparental disomy of chromosome 9p is a frequent stem cell defect in polycythemia vera. Exp Hematol. 2002;30:229–36.

    CAS  PubMed  Google Scholar 

  11. Rumi E, Pietra D, Guglielmelli P, Bordoni R, Casetti I, Milanesi C, et al. Acquired copy-neutral loss of heterozygosity of chromosome 1p as a molecular event associated with marrow fibrosis in MPL-mutated myeloproliferative neoplasms. Blood. 2013;121:4388–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Score J, Cross NCP. Acquired uniparental disomy in myeloproliferative neoplasms. Hematol Oncol Clin North Am. 2012;26:981–91.

    PubMed  Google Scholar 

  13. Mesa RA, Silverstein MN, Jacobsen SJ, Wollan PC, Tefferi A. Population-based incidence and survival figures in essential thrombocythemia and agnogenic myeloid metaplasia: an Olmsted county study, 1976–1995. Am J Hematol. 1999;61:10–5.

    CAS  PubMed  Google Scholar 

  14. Tefferi A, Lasho TL, Jimma T, Finke CM, Gangat N, Vaidya R, et al. One thousand patients with primary myelofibrosis: the mayo clinic experience. Mayo Clin Proc. 2012;87:25–33.

    PubMed  PubMed Central  Google Scholar 

  15. Cervantes F, Dupriez B, Pereira A, Passamonti F, Reilly JT, Morra E, et al. New prognostic scoring system for primary myelofibrosis based on a study of the International working group for myelofibrosis research and treatment. Blood. 2009;113:2895–901.

    CAS  PubMed  Google Scholar 

  16. Passamonti F, Cervantes F, Vannucchi AM, Morra E, Rumi E, Pereira A, et al. A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (international working group for myeloproliferative neoplasms research and treatment). Blood. 2010;115:1703–8.

    CAS  PubMed  Google Scholar 

  17. Bose P, Verstovsek S. The evolution and clinical relevance of prognostic classification systems in myelofibrosis. Cancer. 2016;122:681–92.

    PubMed  Google Scholar 

  18. Guglielmelli P, Lasho TL, Rotunno G, Mudireddy M, Mannarelli C, Nicolosi M, et al. MIPSS70: mutation-enhanced international prognostic score system for transplantation-age patients with primary myelofibrosis. J Clin Oncol. 2018;36:310–8.

    CAS  PubMed  Google Scholar 

  19. Tefferi A, Guglielmelli P, Lasho TL, Gangat N, Ketterling RP, Pardanani AD, et al. MIPSS70+version 2.0: mutation and karyotype-enhanced international prognostic scoring system for primary myelofibrosis. J Clin Oncol. 2018;36:1769–70.

    PubMed  Google Scholar 

  20. Grinfeld J, Nangalia J, Baxter EJ, Wedge DC, Angelopoulos N, Cantrill R, et al. Classification and personalized prognosis in myeloproliferative neoplasms. N Engl J Med. 2018;379:1416–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Vardiman JW, Thiele J, Arbera D, Brunning RD, Borowitz MJ, Porwit A, et al. The 2008 revision of the world health organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114:937–51.

    CAS  PubMed  Google Scholar 

  22. Arber DA, Orazi A, Hasserjian R, Borowitz MJ, Le BMM, Bloomfield CD, et al. The 2016 revision to the world health organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–406.

    CAS  Google Scholar 

  23. Barosi G, Mesa RA, Thiele J, Cervantes F, Campbell PJ, Verstovsek S, et al. Proposed criteria for the diagnosis of post-polycythemia vera and post-essential thrombocythemia myelofibrosis: a consensus statement from the international working group for myelofibrosis research and treatment [6]. Leukemia. 2008;22:437–8.

    CAS  PubMed  Google Scholar 

  24. Santos FPS, Getta B, Masarova L, Famulare C, Schulman J, Datoguia TS, et al. Prognostic impact of RAS-pathway mutations in patients with myelofibrosis. Leukemia. 2020;34:799–810.

    CAS  PubMed  Google Scholar 

  25. Grinfeld J, Nangalia J, Baxter EJ, Wedge DC, Angelopoulos N, Cantrill R, et al. Supplement to: classification and personalized prognosis in myeloproliferative neoplasms. N Engl J Med. 2018;379:1416–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Sallman DA, Padron E. Integrating mutation variant allele frequency into clinical practice in myeloid malignancies. Hematol Oncol Stem Cell Ther. 2016;9:89–95.

    CAS  PubMed  Google Scholar 

  27. Rice KL, Lin X, Wolniak K, Ebert BL, Berkofsky-Fessler W, Buzzai M, et al. Analysis of genomic aberrations and gene expression profiling identifies novel lesions and pathways in myeloproliferative neoplasms. Blood Cancer J. 2011;1:e40.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Stegelmann F, Bullinger L, Griesshammer M, Holzmann K, Habdank M, Kuhn S, et al. High-resolution single-nucleotide polymorphism array-profiling in myeloproliferative neoplasms identifies novel genomic aberrations. Haematologica. 2010;95:666–9.

    CAS  PubMed  Google Scholar 

  29. Grand FH, Hidalgo-curtis CE, Ernst T, Zoi K, Zoi C, Kreil S, et al. Frequent CBL mutations associated with 11q acquired uniparental disomy in myeloproliferative neoplasms. Blood. 2009;113:6182–92.

    CAS  PubMed  Google Scholar 

  30. Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011;478:64–9.

    CAS  PubMed  Google Scholar 

  31. La Starza R, Wlodarska I, Aventin A, Falzetti D, Crescenzi B, Martelli MF, et al. Molecular delineation of 13q deletion boundaries in 20 patients with myeloid malignancies. Blood. 1998;91:231–7.

    PubMed  Google Scholar 

  32. Tanaka K, Arif M, Eguchi M, Guo SX, Hayashi Y, Asaoku H, et al. Frequent allelic loss of the RB, D13S319 and D13S25 locus in myeloid malignancies with deletion/translocation at 13q14 of chromosome 13, but not in lymphoid malignancies. Leukemia. 1999;13:1367–73.

    CAS  PubMed  Google Scholar 

  33. Stilgenbauer S, Leupolt E, Ohl S, Wei G, Schröder M, Fischer K, et al. Heterogeneity of deletions involving RB-1 and the D13S25 locus in B-cell chronic lymphocytic leukemia revealed by fluorescence in situ hybridization. Cancer Res. 1995;55:3475–7.

    CAS  PubMed  Google Scholar 

  34. Juneau AL, Kaehler M, Christensen ER, Schad CR, Zinsmeister AR, Lust J, et al. Detection of RB1 deletions by fluorescence in situ hybridization in malignant hematologic disorders. Cancer Genet Cytogenet. 1998;103:117–23.

    CAS  PubMed  Google Scholar 

  35. Dyson NJ. RB1: A prototype tumor suppressor and an enigma. Genes Dev. 2016;30:1492–502.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ishak CA, Dick FA. Conditional haploinsufficiency of the retinoblastoma tumor suppressor gene. Mol Cell Oncol. 2015;2:3–5.

    Google Scholar 

  37. Olcaydu D, Berg T, Gisslinger B, Gisslinger H, Kralovics R. Deletions of chromosome 13q in myeloproliferative neoplasms: mapping, relation to the jak2-v617f mutation and evaluation of potential tumor suppressor candidates. Blood. 2008;112:3724–3724.

    Google Scholar 

  38. Sinclair EJ, Forrest EC, Reilly JT, Watmore AE, Potter AM. Fluorescence in situ hybridization analysis of 25 cases of idiopathic myelofibrosis and two cases of secondary myelofibrosis: monoallelic loss of RB1, D13S319 and D13S25 loci associated with cytogenetic deletion and translocation involving 13q14. Br J Haematol. 2001;113:365–8.

    CAS  PubMed  Google Scholar 

  39. Mehrotra M, Patel KP, Chen T, Miranda RN, Wang Y, Zuo Z, et al. Genomic and clinicopathologic features of primary myelofibrosis with isolated 13q deletion. Clin Lymphoma, Myeloma Leuk. 2015;15:496–505.

    Google Scholar 

  40. Dameshek W. Some speculations on the myeloproliferative syndromes. Blood. 1951;6:372–5.

    CAS  PubMed  Google Scholar 

  41. Buhr T, Hebeda K, Kaloutsi V, Porwit A, Van der Walt J, Kreipe H. European bone marrow working group trial on reproducibility of world health organization criteria to discriminate essential thrombocythemia from prefibrotic primary myelofibrosis. Haematologica. 2012;97:360–5.

    PubMed  PubMed Central  Google Scholar 

  42. Rondelli D, Goldberg JD, Isola L, Price LS, Shore TB, Boyer M, et al. MPD-RC 101 prospective study of reduced-intensity allogeneic hematopoietic stem cell transplantation in patients with myelofibrosis. Blood. 2014;124:1183–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Cervantes F, How I. Treat myelofibrosis. Blood. 2014;124:2635–43.

    CAS  PubMed  Google Scholar 

  44. Tefferi A, Guglielmelli P, Pardanani A, Vannucchi AM. Myelofibrosis treatment algorithm 2018. Blood Cancer J. 2018;8:72.

    PubMed  PubMed Central  Google Scholar 

  45. Passamonti F, Maffioli M, Cervantes F, Vannucchi AM, Morra E, Barbui T, et al. Impact of ruxolitinib on the natural history of primary myelofibrosis : a comparison of the DIPSS and the COMFORT-2 cohorts. Blood. 2014;123:1833–5.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Nonino.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 kb) NGS Protocol and Table S1. NGS panel

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nonino, A., Campregher, P.V., de Souza Santos, F.P. et al. Genomic characterization and prognostication applied to a Brazilian cohort of patients with myelofibrosis. Int J Hematol 112, 361–368 (2020). https://doi.org/10.1007/s12185-020-02906-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-020-02906-w

Keywords

Navigation