Skip to main content
Log in

„Master switches“ bei kardialer Ischämie

Sonderforschungsbereich 1116 (SFB 1116)

Master switches in cardiac ischemia

CRC 1116

  • Schwerpunkt
  • Published:
Der Kardiologe Aims and scope

Zusammenfassung

Der Sonderforschungsbereich (SFB) 1116 analysiert die Folgen und Reaktionen nach einem akuten Herzinfarkt in experimentellen, präklinischen und klinischen Untersuchungen. Das grundlegende Ziel des SFB 1116 „Master switches bei kardialer Ischämie“ ist die Identifizierung neuer Zielstrukturen in Form von zentralen molekularen oder pathophysiologischen Reaktionen, die essenziell für die akute oder subakute Antwort auf die kardiale Ischämie sind und die wir als „master switches“ definieren. Der SFB 1116 bezieht dabei bewusst systemische Einflüsse auf das ischämische/reperfundierte Herz ein, wie z. B. systemische Antworten des Immunsystems, metabolische Komorbiditäten (Übergewicht, Insulinresistenz, Typ-2-Diabetes mellitus [T2DM]), Anämie und periphere Ischämie/Reperfusion. Das Forschungsprogramm gliedert sich in 2 konzeptionelle Teilbereiche. Der Teilbereich A „Intrazelluläre und zelluläre Effektoren“ widmet sich wichtigen Aspekten der pathophysiologischen Antwort im Herzen. Der Teilbereich B „Metabolische Effektoren und Systeminterferenzen“ fokussiert auf die komplexen Wechselwirkungen zwischen Infarktheilung und kardialer Adaptation und systemischen Effektoren und Komorbiditäten. Das Netzwerk des SFB 1116 zielt so auf die Identifizierung neuer therapeutischer Zielstrukturen („master switches“) unter Berücksichtigung des spezifischen, durch Komorbiditäten und Systemkommunikation bestimmten pathophysiologischen Kontextes. Die Untersuchung dieser „master switches“ der akuten und subakuten Phase nach kardialer Ischämie trägt dazu bei, die individuellen Risiken nach AMI („acute myocardial infarction“) besser abzuschätzen, und ermöglicht, neue kontextspezifische Therapieoptionen zu entwickeln, die den Infarkt als Systemerkrankung berücksichtigen und so letztlich die langfristige Perspektive der Patienten verbessern.

Abstract

The CRC 1116 analyzes the sequelae and reactions after an acute myocardial infarction in experimental, preclinical and clinical investigations. The fundamental aim of the CRC 1116 “Master switches in cardiac ischemia” is the identification of new target structures in the form of central molecular or pathophysiological reactions that are critical for the acute and subacute response to myocardial ischemia and which we define as “master switches”. The CRC 1116 deliberately includes systemic influences on the ischemic/reperfused heart, such as systemic responses of the immune system, metabolic comorbidities (overweight, insulin resistance, type 2 diabetes mellitus, T2DM), anemia and peripheral ischemia/reperfusion. The research program is divided into two conceptional subsections. Subsection A “Intracellular and cellular effectors” is dedicated to important aspects of the pathophysiological response in the heart. Subsection B “metabolic effectors and systemic interferences” focusses on the complex interactions between healing of the infarct and cardiac adaptation and systemic effectors and comorbidities. The network of CRC 1116 therefore aims at the identification of new therapeutic target structures (master switches) taking the specific pathophysiological context determined by comorbidities and systemic communication into consideration. The investigation of these master switches of the acute and subacute phases after myocardial ischemia contributes to a better estimation of the individual risk after acute myocardial infarction (AMI) and enables the development of new context-specific treatment options, which consider the infarct as a systemic disease and therefore ultimately improve the long-term perspective of the patient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Heusch G, Gersh BJ (2017) The pathophysiology of acute myocardial infarction and strategies of protection beyond reperfusion: a continual challenge. Eur Heart J 38:774–784

    CAS  PubMed  Google Scholar 

  2. Freisinger E, Fuerstenberg T, Malyar NM et al (2014) German nationwide data on current trends and management of acute myocardial infarction: discrepancies between trials and real-life. Eur Heart J 35:979–988

    Article  PubMed  Google Scholar 

  3. Szummer K, Wallentin L, Lindhagen L et al (2017) Improved outcomes in patients with ST-elevation myocardial infarction during the last 20 years are related to implementation of evidence-based treatments: experiences from the SWEDEHEART registry 1995–2014. Eur Heart J 38:3056–3065

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cikes M, Solomon SD (2016) Beyond ejection fraction: an integrative approach for assessment of cardiac structure and function in heart failure. Eur Heart J 37:1642–1650

    Article  PubMed  Google Scholar 

  5. Vlagopoulos PT, Tighiouart H, Weiner DE et al (2005) Anemia as a risk factor for cardiovascular disease and all-cause mortality in diabetes: the impact of chronic kidney disease. J Am Soc Nephrol 16:3403–3410

    Article  PubMed  Google Scholar 

  6. Prabhu SD, Frangogiannis NG (2016) The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis. Circ Res 119:91–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Steffens S, Nahrendorf M, Madonna R (2021) Immune cells in cardiac homeostasis and disease: emerging insights from novel technologies. Eur Heart J. https://doi.org/10.1093/eurheartj/ehab842

    Article  PubMed  Google Scholar 

  8. Chen B, Frangogiannis NG (2021) Chemokines in myocardial Infarction. J Cardiovasc Transl Res 14:35–52

    Article  CAS  PubMed  Google Scholar 

  9. Frangogiannis NG (2014) The inflammatory response in myocardial injury, repair, and remodelling. Nat Rev Cardiol 11:255–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Patel PA, Cubbon RM, Sapsford RJ et al (2016) An evaluation of 20 year survival in patients with diabetes mellitus and acute myocardial infarction. Int J Cardiol 203:141–144

    Article  PubMed  Google Scholar 

  11. Bruno RR, Kelm M, Jung C (2020) Spotlight on comorbidities in STEMI patients. Endocrinol Diabetes Metab 3:e102

    Article  PubMed  Google Scholar 

  12. Trads JB, Hull K, Matsuura BS et al (2019) Sign inversion in photopharmacology: incorporation of cyclic azobenzenes in photoswitchable potassium channel blockers and openers. Angew Chem Int Ed Engl 58:15421–15428

    Article  CAS  PubMed  Google Scholar 

  13. Fehrentz T, Huber FME, Hartrampf N et al (2018) Optical control of L‑type Ca(2+) channels using a diltiazem photoswitch. Nat Chem Biol 14:764–767

    Article  CAS  PubMed  Google Scholar 

  14. Kronenbitter A, Funk F, Hackert K et al (2018) Impaired Ca(2+) cycling of nonischemic myocytes contributes to sarcomere dysfunction early after myocardial infarction. J Mol Cell Cardiol 119:28–39

    Article  CAS  PubMed  Google Scholar 

  15. Hopf AE, Andresen C, Kotter S et al (2018) Diabetes-induced cardiomyocyte passive stiffening is caused by impaired insulin-dependent titin modification and can be modulated by neuregulin‑1. Circ Res 123:342–355

    Article  CAS  PubMed  Google Scholar 

  16. Ale-Agha N, Jakobs P, Goy C et al (2021) Mitochondrial telomerase reverse transcriptase protects from myocardial ischemia/reperfusion injury by improving complex I composition and function. Circulation 144:1876–1890

    Article  CAS  PubMed  Google Scholar 

  17. Klose AM, Klier M, Gorressen S et al (2020) Enhanced integrin activation of PLD2-deficient platelets accelerates inflammation after myocardial infarction. Int J Mol Sci 21(9):3210. https://doi.org/10.3390/ijms21093210

    Article  CAS  PubMed Central  Google Scholar 

  18. Heinen A, Nederlof R, Panjwani P et al (2019) IGF1 treatment improves cardiac remodeling after infarction by targeting myeloid cells. Mol Ther 27:46–58

    Article  CAS  PubMed  Google Scholar 

  19. Gorski DJ, Petz A, Reichert C et al (2019) Cardiac fibroblast activation and hyaluronan synthesis in response to hyperglycemia and diet-induced insulin resistance. Sci Rep 9:1827

    Article  PubMed  PubMed Central  Google Scholar 

  20. Petz A, Grandoch M, Gorski DJ et al (2019) Cardiac hyaluronan synthesis is critically involved in the cardiac macrophage response and promotes healing after ischemia reperfusion injury. Circ Res 124:1433–1447

    Article  CAS  PubMed  Google Scholar 

  21. Schmid E, Neef S, Berlin C et al (2015) Cardiac RKIP induces a beneficial beta-adrenoceptor-dependent positive inotropy. Nat Med 21:1298–1306

    Article  CAS  PubMed  Google Scholar 

  22. Grandoch M, Flogel U, Virtue S et al (2019) 4‑methylumbelliferone improves the thermogenic capacity of brown adipose tissue. Nat Metab 1:546–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Abbate A, Trankle CR, Buckley LF et al (2020) Interleukin‑1 blockade inhibits the acute inflammatory response in patients with ST-segment-elevation myocardial infarction. J Am Heart Assoc 9:e14941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Abbate A, Wohlford GF, Del Buono MG et al (2021) Interleukin‑1 blockade with anakinra and heart failure following ST-segment elevation myocardial infarction: results from a pooled analysis of the VCUART clinical trials. Eur Heart J Cardiovasc Pharmacother. https://doi.org/10.1093/ehjcvp/pvab075

    Article  PubMed  Google Scholar 

  25. Alter C, Ding Z, Flogel U et al (2019) A2bR-dependent signaling alters immune cell composition and enhances IL‑6 formation in the ischemic heart. Am J Physiol Heart Circ Physiol 317:H190–H200

    Article  CAS  PubMed  Google Scholar 

  26. Jelenik T, Flogel U, Alvarez-Hernandez E et al (2018) Insulin resistance and vulnerability to cardiac ischemia. Diabetes 67:2695–2702

    Article  PubMed  PubMed Central  Google Scholar 

  27. Weske S, Vaidya M, Reese A et al (2018) Targeting sphingosine-1-phosphate lyase as an anabolic therapy for bone loss. Nat Med 24:667–678

    Article  CAS  PubMed  Google Scholar 

  28. Wischmann P, Kuhn V, Suvorava T et al (2020) Anaemia is associated with severe RBC dysfunction and a reduced circulating NO pool: vascular and cardiac eNOS are crucial for the adaptation to anaemia. Basic Res Cardiol 115:43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Leo F, Suvorava T, Heuser SK et al (2021) Red blood cell and endothelial eNOS independently regulate circulating nitric oxide metabolites and blood pressure. Circulation 144:870–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Heusch G (2020) Myocardial ischaemia-reperfusion injury and cardioprotection in perspective. Nat Rev Cardiol 17:773–789

    Article  PubMed  Google Scholar 

  31. Kleinbongard P, Amanakis G, Skyschally A et al (2018) Reflection of cardioprotection by remote ischemic perconditioning in attenuated ST-segment elevation during ongoing coronary occlusion in pigs: evidence for cardioprotection from Ischemic injury. Circ Res 122:1102–1108

    Article  CAS  PubMed  Google Scholar 

  32. Thielmann M, Kottenberg E, Kleinbongard P et al (2013) Cardioprotective and prognostic effects of remote ischaemic preconditioning in patients undergoing coronary artery bypass surgery: a single-centre randomised, double-blind, controlled trial. Lancet 382:597–604

    Article  PubMed  Google Scholar 

  33. Kleinbongard P, Botker HE, Ovize M et al (2020) Co-morbidities and co-medications as confounders of cardioprotection-does it matter in the clinical setting? Br J Pharmacol 177:5252–5269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zaharia OP, Strassburger K, Strom A et al (2019) Risk of diabetes-associated diseases in subgroups of patients with recent-onset diabetes: a 5-year follow-up study. Lancet Diabetes Endocrinol 7:684–694

    Article  PubMed  Google Scholar 

  35. Roden M, Shulman GI (2019) The integrative biology of type 2 diabetes. Nature 576:51–60

    Article  CAS  PubMed  Google Scholar 

  36. Hesse J, Owenier C, Lautwein T et al (2021) Single-cell transcriptomics defines heterogeneity of epicardial cells and fibroblasts within the infarcted murine heart. Elife 10:e65921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hesse J, Rosse MK, Steckel B et al (2021) Mono-ADP-ribosylation sites of human CD73 inhibit its adenosine-generating enzymatic activity. Purinergic Signal. https://doi.org/10.1007/s11302-021-09832-4

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens W. Fischer.

Ethics declarations

Interessenkonflikt

J.W. Fischer, M. Kelm, A. Gödecke, M. Krüger, N. Klöcker und G. Heusch geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fischer, J.W., Kelm, M., Gödecke, A. et al. „Master switches“ bei kardialer Ischämie. Kardiologe 16, 115–122 (2022). https://doi.org/10.1007/s12181-022-00538-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12181-022-00538-4

Schlüsselwörter

Keywords

Navigation