Skip to main content

Advertisement

Log in

Advances in FAI Imaging: a Focused Review

  • Outcomes Research in Orthopedics (O Ayeni, Section Editor)
  • Published:
Current Reviews in Musculoskeletal Medicine Aims and scope Submit manuscript

Abstract

Purpose of Review

Femoroacetabular impingement (FAI) is one of the main causes of hip pain in young adults and poses clinical challenges which have placed it at the forefront of imaging and orthopedics. Diagnostic hip imaging has dramatically changed in the past years, with the arrival of new imaging techniques and the development of magnetic resonance imaging (MRI). This article reviews the current state-of-the-art clinical routine of individuals with suspected FAI, limitations, and future directions that show promise in the field of musculoskeletal research and are likely to reshape hip imaging in the coming years.

Recent Findings

The largely unknown natural disease course, especially in hips with FAI syndrome and those with asymptomatic abnormal morphologies, continues to be a problem as far as diagnosis, treatment, and prognosis are concerned. There has been a paradigm shift in recent years from bone and soft tissue morphological analysis towards the tentative development of quantitative approaches, biochemical cartilage evaluation, dynamic assessment techniques and, finally, integration of artificial intelligence (AI)/deep learning systems.

Summary

Imaging, AI, and hip preserving care will continue to evolve with new problems and greater challenges. The increasing number of analytic parameters describing the hip joint, as well as new sophisticated MRI and imaging analysis, have carried practitioners beyond simplistic classifications. Reliable evidence-based guidelines, beyond differentiation into pure instability or impingement, are paramount to refine the diagnostic algorithm and define treatment indications and prognosis. Nevertheless, the boundaries of morphological, functional, and AI-aided hip assessment are gradually being pushed to new frontiers as the role of musculoskeletal imaging is rapidly evolving.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• Griffin DR, Dickenson EJ, O’Donnell J, et al. The Warwick Agreement on femoroacetabular impingement syndrome (FAI syndrome): an international consensus statement. Br J Sports Med. 2016;50:1169–76. Consensus statement highlighing the fundamental concepts on FAI and FAIS.

  2. • Nepple JJ, Prather H, Trousdale RT, Clohisy JC, Beaulé PE, Glyn-Jones S, et al. Clinical diagnosis of femoroacetabular impingement. J Am Acad Orthop Surg. 2013;21(Suppl 1):S16–9. Pioneer work on defining the clinical FAI syndrome.

  3. • Ganz R, Parvizi J, Beck M, Leunig M, Nötzli H, Siebenrock KA. Femoroacetabular impingement: a cause for osteoarthritis of the hip. Clin Orthop Relat Res. 2003;(417):112–120. https://doi.org/10.1097/01.blo.0000096804.78689.c2. Pioneer work on defining the FAI mechanism and its implications.

  4. Mascarenhas VV, Rego PA, Dantas P, Caetano AP, Jans L, Sutter R, et al. Can we discriminate symptomatic hip patients from asymptomatic volunteers based on anatomic predictors? A 3-dimensional magnetic resonance study on cam, pincer, and Spinopelvic parameters. Am J Sports Med. 2018;46:3097–110.

    PubMed  Google Scholar 

  5. Agricola R, Heijboer MP, Bierma-Zeinstra SMA, Verhaar JAN, Weinans H, Waarsing JH. Cam impingement causes osteoarthritis of the hip: a nationwide prospective cohort study (CHECK). Ann Rheum Dis. 2013;72:918–23.

    PubMed  Google Scholar 

  6. •• Mascarenhas VV, Castro MO, Rego PA, et al. The Lisbon Agreement on Femoroacetabular Impingement Imaging-part 1: overview [published online ahead of print, 2020 Jul 17] [published correction appears in Eur Radiol 2020 Jul 17]. Eur Radiol 2020. https://doi.org/10.1007/s00330-020-06822-9. Consensus agreement defining the fundamental concepts on FAI and FAIS.

  7. •• Mascarenhas VV, Ayeni OR, Egund N, Jurik AG, Caetano A, Castro M, et al. Im aging methodology for hip preservation: techniques, parameters, and thresholds. Semin Musculoskelet Radiol. 2019;23:197–226. Comprehensive review article on the different techniques and parameters used in hip and FAI imaging.

  8. Mascarenhas VV, Caetano A. Imaging the young adult hip in the future. Ann Joint. 2018;3:47.

    Google Scholar 

  9. Schmaranzer F, Klauser A, Kogler M, Henninger B, Forstner T, Reichkendler M, et al. Diagnostic performance of direct traction MR arthrography of the hip: detection of chondral and labral lesions with arthroscopic comparison. Eur Radiol. 2014;25:1721–30. https://doi.org/10.1007/s00330-014-3534-x.

    Article  PubMed  Google Scholar 

  10. Hemke R, Mascarenhas V, Maas M. Novel imaging techniques in rheumatic diseases. Semin Musculoskelet Radiol. 2018;22:237–44.

    PubMed  Google Scholar 

  11. Bittersohl B, Hosalkar HS, Hesper T, Tiderius CJ, Zilkens C, Krauspe R. Advanced imaging in femoroacetabular impingement: current state and future prospects. Front Surg. 2015;2:608.

    Google Scholar 

  12. Rossi MJ, Sheean AJ, Cote MP, Brand JC, Lubowitz JH. The patient-reported outcomes measurement information system (PROMIS): can we finally compare apples to oranges? Arthroscopy. 2020;36:1215–7.

    PubMed  Google Scholar 

  13. Mascarenhas VV, Rego PA, Dantas P, Morais F, McWilliams J, Collado D, et al. Imaging prevalence of femoroacetabular impingement in symptomatic patients, athletes, and asymptomatic individuals: a systematic review. Eur J Radiol. 2016;85:73–95.

    PubMed  Google Scholar 

  14. Lopes DS, Pires SM, Mascarenhas VV, Silva MT, Jorge JA. On a “Columbus’ Egg”: Modeling the shape of asymptomatic, dysplastic and impinged hip joints. Med Eng Phys. 2018;59:50–55. https://doi.org/10.1016/j.medengphy.2018.07.001.

  15. Rhee C, Le Francois T, Byrd JWT, Glazebrook M, Wong I. Radiographic diagnosis of pincer-type Femoroacetabular impingement: a systematic review. Orthop J Sports Med. 2017;5:232596711770830.

    Google Scholar 

  16. Saito M, Tsukada S, Yoshida K, Okada Y, Tasaki A. Correlation of alpha angle between various radiographic projections and radial magnetic resonance imaging for cam deformity in femoral head-neck junction. Knee Surg Sports Traumatol Arthrosc. 2017;25(1):77–83. https://doi.org/10.1007/s00167-016-4046-9.

  17. Eijer H, Leunig M, Mahomed N, Ganz R. Cross-table lateral radiographs for screening of anterior femoral head-neck offset in patients with femoro-acetabular impingement. Hip Int. 2001;11:37–41.

    Google Scholar 

  18. Mascarenhas VV, Rego PA, Dantas P, Castro M, Jans L, Marques RM, et al. Hip shape is symmetric, non-dependent on limb dominance and gender-specific: implications for femoroacetabular impingement. A 3D CT analysis in asymptomatic subjects. Eur Radiol. 2018;28:1609–24.

    PubMed  Google Scholar 

  19. Mascarenhas VV, Rego P, Dantas P, Gaspar A, Soldado F, Consciência JG. Cam deformity and the omega angle, a novel quantitative measurement of femoral head-neck morphology: a 3D CT gender analysis in asymptomatic subjects. Eur Radiol. 2017;27:2011–23.

    PubMed  Google Scholar 

  20. Zhang L, Wells JE, Dessouky R, et al. 3D CT segmentation of CAM type femoroacetabular impingement-reliability and relationship of CAM lesion with anthropomorphic features. Br J Radiol. 2018;91(1092):20180371. https://doi.org/10.1259/bjr.20180371.

  21. Dessouky R, Chhabra A, Zhang L, Gleason A, Chopra R, Chatzinoff Y, et al. Cam-type femoroacetabular impingement-correlations between alpha angle versus volumetric measurements and surgical findings. Eur Radiol. 2019;29:3431–40.

    PubMed  Google Scholar 

  22. Samim M, Eftekhary N, Vigdorchik JM, Elbuluk A, Davidovitch R, Youm T, et al. 3D-MRI versus 3D-CT in the evaluation of osseous anatomy in femoroacetabular impingement using Dixon 3D FLASH sequence. Skelet Radiol. 2019;48:429–36.

    Google Scholar 

  23. Yan K, Xi Y, Sasiponganan C, Zerr J, Wells JE, Chhabra A. Does 3DMR provide equivalent information as 3DCT for the pre-operative evaluation of adult hip pain conditions of femoroacetabular impingement and hip dysplasia? Br J Radiol. 2018;87:20180474.

    Google Scholar 

  24. Lerch TD, Degonda C, Schmaranzer F, Todorski I, Cullmann-Bastian J, Zheng G, et al. Patient-specific 3-D magnetic resonance imaging-based dynamic simulation of hip impingement and range of motion can replace 3-D computed tomography-based simulation for patients with femoroacetabular impingement: implications for planning open hip preservation surgery and hip arthroscopy. Am J Sports Med. 2019;47:2966–77.

    PubMed  Google Scholar 

  25. Hanke MS, Steppacher SD, Anwander H, Werlen S, Siebenrock KA, Tannast M. What MRI findings predict failure 10 years after surgery for femoroacetabular impingement? [published correction appears in Clin Orthop Relat Res. 2017 Apr;475(4):1278]. Clin Orthop Relat Res. 2017;475(4):1192–1207. https://doi.org/10.1007/s11999-016-5040-8.

  26. Ng VY, Arora N, Best TM, Pan X, Ellis TJ. Efficacy of surgery for femoroacetabular impingement: a systematic review. Am J Sports Med. 2010;38:2337–45.

    PubMed  Google Scholar 

  27. Wells J, Millis M, Kim YJ, Bulat E, Miller P, Matheney T. Survivorship of the bernese periacetabular osteotomy: What factors are associated with long-term failure?. Clin Orthop Relat Res. 2017;475(2):396–405. https://doi.org/10.1007/s11999-016-4887-z.

  28. Abrams GD. Editorial commentary: not repairing the hip capsule after arthroscopy-what were we thinking? Arthroscopy. 2018;34:319–20.

    PubMed  Google Scholar 

  29. Bsat S, Frei H, Beaulé PE. The acetabular labrum: a review of its function. Bone Joint J. 2016;98-B:730–5.

    CAS  PubMed  Google Scholar 

  30. Atzmon R, Sharfman ZT, Haviv B, Frankl M, Rotem G, Amar E, et al. Does capsular closure influence patient-reported outcomes in hip arthroscopy for femoroacetabular impingement and labral tear? J Hip Preserv Surg. 2019;6:199–206.

    PubMed  PubMed Central  Google Scholar 

  31. Harris JD. Hip labral repair: options and outcomes. Curr Rev Musculoskelet Med. 2016;9(4):361–367. https://doi.org/10.1007/s12178-016-9360-9.

  32. Saied AM, Redant C, El-Batouty M, El-Lakkany MR, El-Adl WA, Anthonissen J, et al. Accuracy of magnetic resonance studies in the detection of chondral and labral lesions in femoroacetabular impingement: systematic review and meta-analysis. BMC Musculoskelet Disord. 2017;18:83.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sutter R, Zubler V, Hoffmann A, Mamisch-Saupe N, Dora C, Kalberer F, et al. Hip MRI: how useful is Intraarticular contrast material for evaluating surgically proven lesions of the labrum and articular cartilage? AJR Am J Roentgenol. 2014;202:160–9.

    PubMed  Google Scholar 

  34. Smith TO, Drew B, Toms AP, Jerosch-Herold C, Chojnowski AJ. Diagnostic accuracy of magnetic resonance imaging and magnetic resonance arthrography for triangular fibrocartilaginous complex injury. J Bone Joint Surg. 2012;94:824–32.

    PubMed  Google Scholar 

  35. Chopra A, Grainger AJ, Dube B, Evans R, Hodgson R, Conroy J, et al. Comparative reliability and diagnostic performance of conventional 3T magnetic resonance imaging and 1.5T magnetic resonance arthrography for the evaluation of internal derangement of the hip. Eur Radiol. 2018;28:963–71.

    CAS  PubMed  Google Scholar 

  36. Crespo-Rodríguez AM, De Lucas-Villarrubia JC, Pastrana-Ledesma M, Hualde-Juvera A, Méndez-Alonso S, Padron M. The diagnostic performance of non-contrast 3-Tesla magnetic resonance imaging (3-T MRI) versus 1.5-Tesla magnetic resonance arthrography (1.5-T MRA) in femoro-acetabular impingement. Eur J Radiol. 2017;88:109–16.

    PubMed  Google Scholar 

  37. Schmaranzer F, Todorski IAS, Lerch TD, Schwab J, Cullmann-Bastian J, Tannast M. Intra-articular lesions: imaging and surgical correlation. Semin Musculoskelet Radiol. 2017;21:487–506.

    PubMed  Google Scholar 

  38. Schumann S, Liu L, Tannast M, Bergmann M, Nolte L-P, Zheng G. An integrated system for 3D hip joint reconstruction from 2D X-rays: a preliminary validation study. Ann Biomed Eng. 2013;41:2077–87.

    PubMed  Google Scholar 

  39. Audenaert EA, Baelde N, Huysse W, Vigneron L, Pattyn C. Development of a three-dimensional detection method of cam deformities in femoroacetabular impingement. Skelet Radiol. 2011;40:921–7.

    Google Scholar 

  40. Chandra SS, Xia Y, Engstrom C, Crozier S, Schwarz R, Fripp J. Focused shape models for hip joint segmentation in 3D magnetic resonance images. Med Image Anal. 2014;18:567–78.

    PubMed  Google Scholar 

  41. Zeng G, Zheng G. Deep volumetric shape learning for semantic segmentation of the hip joint. Springer Nature Switzerland AG 2019 T. Vrtovec et al. (Eds.): MSKI 2018, LNCS 11404, pp. 35–48, 2019. https://doi.org/10.1007/978-3-030-11166-3_4.

  42. Bien N, Rajpurkar P, Ball RL, Irvin J, Park A, Jones E, et al. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: development and retrospective validation of MRNet. PLoS Med. 2018;15:e1002699.

    PubMed  PubMed Central  Google Scholar 

  43. Hellwig FL, Tong J, Hussell JG. Hip joint degeneration due to cam impingement: a finite element analysis. Comput Methods Biomech Biomed Engin. 2016;19:41–8.

    CAS  PubMed  Google Scholar 

  44. Albers CE, Hanke MS, Ecker TM, Haefeli PC, Siebenrock KA, Steppacher SD, et al. Computer assisted diagnosis and treatment planning of femoroacetabular impingement (FAI). In: Lecture notes in computational vision and biomechanics. Cham: Springer International Publishing; 2015. p. 173–96.

    Google Scholar 

  45. Atkins PR, Aoki SK, Whitaker RT, Weiss JA, Peters CL, Anderson AE. Does removal of subchondral cortical bone provide sufficient resection depth for treatment of cam femoroacetabular impingement?. Clin Orthop Relat Res. 2017;475(8):1977–1986. https://doi.org/10.1007/s11999-017-5326-5.

  46. Breighner RE, Bogner EA, Lee SC, Koff MF, Potter HG. Evaluation of osseous morphology of the hip using zero Echo time magnetic resonance imaging. Am J Sports Med. 2019;47:3460–8.

    PubMed  Google Scholar 

  47. Florkow MC, Zijlstra F, Willemsen K, et al. Deep learning–based MR-to-CT synthesis: the influence of varying gradient echo–based MR images as input channels. Magn Reson Med. 2019;83:1429–41.

    PubMed  PubMed Central  Google Scholar 

  48. Samaan MA, Zhang AL, Gallo MC, Schwaiger BJ, Link TM, Souza RB, et al. Quantitative magnetic resonance arthrography in patients with femoroacetabular impingement. J Magn Reson Imaging. 2016;44:1539–45.

    PubMed  PubMed Central  Google Scholar 

  49. Schmaranzer F, Helfenstein R, Zeng G, Lerch TD, Novais EN, Wylie JD, et al. Automatic MRI-based three-dimensional models of hip cartilage provide improved morphologic and biochemical analysis. Clin Orthop Relat Res. 2019;477:1036–52.

    PubMed  PubMed Central  Google Scholar 

  50. Röling MA, Visser MI, Oei EHG, Pilot P, Kleinrensink G-J, Bloem RM. A quantitative non-invasive assessment of femoroacetabular impingement with CT-based dynamic simulation--cadaveric validation study. BMC Musculoskelet Disord. 2015;16:50.

    PubMed  PubMed Central  Google Scholar 

  51. Lerch TD, Siegfried M, Schmaranzer F, Leibold CS, Zurmühle CA, Hanke MS, et al. Location of intra- and extra-articular hip impingement is different in patients with pincer-type and mixed-type femoroacetabular impingement due to acetabular retroversion or protrusio acetabuli on 3D CT-based impingement simulation. Am J Sports Med. 2020;48:661–72.

    PubMed  Google Scholar 

  52. Tannast M, Kubiak-Langer M, Langlotz F, Puls M, Murphy SB, Siebenrock KA. Noninvasive three-dimensional assessment of femoroacetabular impingement. J Orthop Res. 2006;25:122–31.

    Google Scholar 

  53. Van Houcke J, Khanduja V, Nakano N, Krekel P, Pattyn C, Audenaert E. Accuracy of navigated cam resection in femoroacetabular impingement: a randomised controlled trial. Int J Med Rob Comput Assist Surg. 2017;13:e1839.

    Google Scholar 

  54. Buchan LL, Zhang H, Konan S, Heaslip I, Ratzlaff CR, Wilson DR. Open-MRI measures of cam intrusion for hips in an anterior impingement position relate to acetabular contact force. J Orthop Res. 2015;34:205–16.

    PubMed  Google Scholar 

  55. Wassilew GI, Janz V, Heller MO, Tohtz S, Rogalla P, Hein P, et al. Real time visualization of femoroacetabular impingement and subluxation using 320-slice computed tomography. J Orthop Res. 2012;31:275–81.

    PubMed  Google Scholar 

  56. Fernquest S, Arnold C, Palmer A, Broomfield J, Denton J, Taylor A, et al. Osseous impingement occurs early in flexion in cam-type femoroacetabular impingement: a 4D CT model. Bone Joint J. 2017;99-B:41–8.

    CAS  PubMed  Google Scholar 

  57. Burke CJ, Walter WR, Gyftopoulos S, Pham H, Baron S, Gonzalez-Lomas G, et al. Real-time assessment of femoroacetabular motion using radial gradient echo magnetic resonance arthrography at 3 tesla in routine clinical practice: a Pilot study. Arthroscopy. 2019;35:2366–74.

    PubMed  Google Scholar 

  58. Wong TT, Lynch TS, Popkin CA, Kazam JK. Preoperative use of a 3D printed model for femoroacetabular impingement surgery and its effect on planned osteoplasty. AJR Am J Roentgenol. 2018;211:W116–21.

    PubMed  Google Scholar 

  59. Flecher X, Migaud H. From radiographs to 3D printing: how can new surgical planning technologies contribute to hip surgery? Orthopa Traumatol Surg Res : OTSR. 2017;103:323–4.

    CAS  Google Scholar 

  60. Ma D, Gulani V, Seiberlich N, Liu K, Sunshine JL, Duerk JL, et al. Magnetic resonance fingerprinting. Nature. 2013;495:187–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kooijman MN, Kruithof CJ, van Duijn CM, Duijts L, Franco OH, van IJzendoorn MH, et al. The generation R study: design and cohort update 2017. Eur J Epidemiol. 2016;31:1243–64.

    PubMed  Google Scholar 

  62. Anoushiravani AA, Patton J, Sayeed Z, El-Othmani MM, Saleh KJ. Big data, big research: implementing population health-based research models and integrating care to reduce cost and improve outcomes. Orthop Clin North Am. 2016;47:717–24.

    PubMed  Google Scholar 

  63. Aphinyanaphongs Y. Big data analyses in health and opportunities for research in radiology. Semin Musculoskelet Radiol. 2017;21:032–6.

    Google Scholar 

  64. Tachmazidou I, Hatzikotoulas K, Southam L, et al. Identification of new therapeutic targets for osteoarthritis through genome-wide analyses of UK Biobank data. Nat Genet. 2019;51:230–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Coppola L, Cianflone A, Grimaldi AM, et al. Biobanking in health care: evolution and future directions. J Transl Med. 2019;17(1):172. https://doi.org/10.1186/s12967-019-1922-3.

  66. Recht M, Bryan RN. Artificial intelligence: threat or boon to radiologists? J Am Coll Radiol. 2017;14:1476–80.

    PubMed  Google Scholar 

  67. Syed AB, Zoga AC. Artificial intelligence in radiology: current technology and future directions. Semin Musculoskelet Radiol. 2018;22:540–5.

    PubMed  Google Scholar 

  68. Xue Y, Zhang R, Deng Y, Chen K, Jiang T. A preliminary examination of the diagnostic value of deep learning in hip osteoarthritis. PLoS One. 2017;12:e0178992.

    PubMed  PubMed Central  Google Scholar 

  69. von CE S, Sohn JH, Liu F, et al. Development and validation of a multitask deep learning model for severity grading of hip osteoarthritis features on radiographs. Radiology. 2020;295:136–45.

    Google Scholar 

  70. van Klij P, Heijboer MP, Ginai AZ, Verhaar JAN, Waarsing JH, Agricola R. Cam morphology in young male football players mostly develops before proximal femoral growth plate closure: a prospective study with 5-yearfollow-up. Br J Sports Med. 2019;53:532–8.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasco V. Mascarenhas.

Ethics declarations

Conflict of Interest

Vasco V. Mascarenhas, António Caetano, Pedro Dantas, and Paulo Rego have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Outcomes Research in Orthopedics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mascarenhas, V.V., Caetano, A., Dantas, P. et al. Advances in FAI Imaging: a Focused Review. Curr Rev Musculoskelet Med 13, 622–640 (2020). https://doi.org/10.1007/s12178-020-09663-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12178-020-09663-7

Keywords

Navigation