Skip to main content
Log in

Optimization of a Digestion Method Using Diluted Acid in Bee Pollen Samples for Determination of Fe, Mn, and Zn by Flame Atomic Absorption Spectrometry

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

In this study, the determination of Fe, Mn, and Zn by flame atomic absorption spectrometry (FAAS) was performed in nine bee pollen samples from different cities. The efficiency of acid digestion in bee pollen samples using nitric acid at different concentrations (3.5, 7.0, and 14.0 mol L−1) and hydrogen peroxide in a microwave oven was evaluated. The proposed procedure using nitric acid diluted to 3.5 mol L−1 was effective for the digestion of all the pollen samples. The samples showed low levels of Fe. However, Mn and Zn were the elements which presented the highest concentrations in the samples. The bee pollen samples studied showed a great Mn and Zn contribution to the recommended daily intake (RDI) of the human diet, contributing with 71.7 and 15.1 %, respectively. The accuracy of the measurements by FAAS was evaluated by adding aliquots of the elements in the digestates. Recoveries obtained ranged from 89 to 106 % for Fe, 94 to 100 % for Mn, and 88 to 108 % for Zn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ANVISA – Agência Nacional de Vigilância Sanitária 2005 Resolução RDC n° 269, de 22 de setembro de. Available in: http://portal.anvisa.gov.br/wps/wcm/connect/1884970047457811857dd53fbc4c6735/%20RDC_269_2005.pdf?MOD=AJPERES. Accessed 20 Mar 2016.

  • Alcoforado Filho FG, Gonçalves JC (2000) Flora apícola e mel orgânico. Embrapa Meio Norte, Teresina, Brazil

  • Araújo GCL, Gonzalez MH, Ferreira AG, Nogueira ARA, Nóbrega JA (2002) Effect of acid concentration on closed-vessel microwave-assisted digestion of plant materials. Spectrochim Acta Part B 57:2121–2132

    Article  Google Scholar 

  • Baldi-Coronel B, Grasso D, Pereira SC, Fernández G (2004) Caracterización bromatológica del polen apícola argentino. Cienc Docencia Tecnol 29:145–181

    Google Scholar 

  • Bermejo P, Pena EM, Dominguez R, Bermejo A, Cocho JA, Fraga JM (2002) Iron and zinc in hydrolised fractions on human milk and infant formulas using an in vitro method. Food Chem 77:361–369

    Article  CAS  Google Scholar 

  • Carpes ST, Begnini R, Alencar SM, Masson ML (2007) Study of preparations of bee pollen extracts, antioxidant and antibacterial activity. Ciênc Agrotec 31:1818–1825

    Article  CAS  Google Scholar 

  • Conti MH, Botrè F (2001) Honeybees and their products as potential bioindicators of heavy metals contamination. Environ Monit Assess 69:267–282

    Article  CAS  Google Scholar 

  • Crailsheim K, Schneider LHW, Hrassnigg N, Bühlmann G, Brosch U, Gmeinbauer R, Schöffmann B (1992) Pollen consumption and utilization in worker honeybees (Apis mellifera Carnica): dependence on individual age and function. J Insect Physiol 38(6):409–419

    Article  Google Scholar 

  • Dokkum WV, De Vos RH, Muys TH, Wesstra JA (1989) Minerals and trace elements in total diets in the Netherlands. Brit J Nutr 61:7–15

    Article  Google Scholar 

  • Formicki G, Greń A, Stawarz R, Zyśk B, Gał A (2013) Metal content in honey, propolis, wax, and bee pollen and implications for metal pollution monitoring. Pol J Environ Stud 22(1):99–106

    CAS  Google Scholar 

  • Gonzalez MH, Souza GB, Oliveira RV, Forato LA, Nóbrega JÁ, Nogueira ARA (2009) Microwave-assisted digestion procedures for biological samples with diluted nitric acid: identification of reaction products. Talanta 79:396–401

    Article  CAS  Google Scholar 

  • Harris DC (2007) Quantitative chemical analysis, 7th edn. W. H. Freeman, New York

    Google Scholar 

  • Harmsen K, Vlek PLG (1985) The chemistry of micronutrients in soil. Fert Res 7: 1–42

  • Hayden DA, De França CF (2013) Dinâmica do uso e ocupação do solo no município de Igarapé-Açu/Pará, entre 1989 e 2008. Rev Pers Geo 8(9):1–12

    Google Scholar 

  • Iannuzzi J (1993) Pollen: food for honey bee and man? III. Am Bee J 133(8):557–563

    Google Scholar 

  • Jacobson S, Wester PO (1977) Balance study of twenty trace elements during total parenteral 759 nutrition in man. Brit J Nutr 37:107–126

    Article  CAS  Google Scholar 

  • Kump P, Necemer M, Snajder J (1996) Determination of trace elements in bee honey, pollen and tissue by total reflection and radioisotope X-ray fluorescence spectrometry. Spectrochim Acta Part B 51:499–507

    Article  Google Scholar 

  • Lengler S (2002) Pólen Apícola, 2nd edn. UFSM, Rio Grande do Sul, Brazil

  • Martins MCT (2010) Pólen apícola brasileiro: valor nutritivo e funcional, qualidade e contaminantes inorgânicos. Thesis, State University of Campinas

  • Morgano MA, Martins MCT, Rabonato LC, Milani RF, Yotsuyanagi K, Rodriguez-Amaya DB (2012) A comprehensive investigation of the mineral composition of Brazilian bee pollen: geographic and seasonal variations and contribution to human diet. J Braz Chem Soc 23(4):727–736

    CAS  Google Scholar 

  • O’Rourke MK, Buchmann SL (1991) Standardized analytical techniques for bee-collected pollen. Environ Entomol 20(2):507–513

    Article  Google Scholar 

  • Pereira Junior JB, Dantas KGF (2016) Evaluation of inorganic elements in cat's claw teas using ICP OES and GF AAS. Food Chem 196:331–337

    Article  Google Scholar 

  • Roman A (2007) Content of some trace elements in fresh honeybee pollen. Pol J Food Nutr Sci 57(4):475–478

    Google Scholar 

  • Saavedra AR, Di Bernardo ML, Rondon C, Gutiérrez L, Saavedra O, González I, Vit P (2007) Determinación de plomo en polen apícola de Brassica napus L. Del Páramo de Misintá, estado Mérida, Venezuela. Rev Inst Nac Hig 38:6–10

    Google Scholar 

  • Serra-Bonvehí J, Escolà-Jordà R (1997) Nutrient composition and microbiological quality of honeybee-collected pollen in Spain. J Agr Food Chem 45:725–732

    Article  Google Scholar 

  • Silva AS, Araújo SB, Souza DC, Silva FAS (2012) Study of the Cu, Mn, Pb and Zn dynamics in soil, plants and bee pollen from the region of Teresina (PI), Brazil. An Acad Bras Ciênc 84(4):881–889

    Article  CAS  Google Scholar 

  • Silva GR, Da Natividade TB, Camara CA, Da Silva SEM, Dos Santos FAR, Silva TMS (2014) Identification of sugar, amino acids and minerals from the pollen of Jandaíra stingless bees (Melipona subnitida). Food Nutr Sci 5:1015–1021

    Article  Google Scholar 

  • Somerville DC, Nicol HI (2002) Mineral content of honey bee-collected pollen from southern New South Wales. Aust J Exp Agr 42:1131–1136

    Article  CAS  Google Scholar 

  • Souza SNP, Nascentes CC, Costa LM (2013) Validation of a microwave-assisted digestion procedure of pâté samples using diluted HNO3 for Fe and Zn determination by FS FAAS. Anal Methods 5:6411–6415

    Article  CAS  Google Scholar 

  • Szczêsna T (2007) Concentration of selected elements in honeybee-collected pollen. J Apic Sci 51:5–13

    Google Scholar 

  • Taha EA (2015) Chemical composition and amounts of mineral elements in honeybee-collected pollen in relation to botanical origin. J Apic Sci 59(1):75–81

    Google Scholar 

  • Tu Y, Zhao Y, Xu M, Li X, Du H (2013) Simultaneous determination of 20 inorganic elements in preserved egg prepared with different metal ions by ICP-AES. Food Anal Methods 6(2):667–676

    Article  Google Scholar 

  • Valente MA, Silva JML, Da Rodrigues TE, Carvalho EJM, Rolim PAM, Silva ES, Pereira ICB (2001) Solos e Avaliação da Aptidão Agrícola das Terras do Município de Castanhal, Estado do Pará. Brazilian Agricultural Research Corporation - Embrapa 119:1–29

    Google Scholar 

  • Yang K, Wu D, Ye X, Liu D, Chen J, Sun P (2013) Characterization of chemical composition of bee pollen in China. J Agr Food Chem 61:708–718

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly G. Fernandes Dantas.

Ethics declarations

This is an original research article that has neither been published previously nor considered presently for publication elsewhere.

All authors named in the manuscript are entitled to the authorship and have approved the final version of the submitted manuscript.

Funding

This study was funded by Fundação Amazônia de Amparo a Estudos e Pesquisas (FAPESPA) (Processo ICAAF N° 012/2012), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (Processo CNPq –REPENSA n° 562994/2010–6), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Conflict of Interest

Jean S. Siqueira has received research grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). João B. Pereira Junior, Michelle S. Lemos have received research grants from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Jean S. Siqueira declares that he has no conflict of interest. João B. Pereira Junior declares that he has no conflict of interest. Michelle S. Lemos declares that she has no conflict of interest. Heronides A. Dantas Filho declares that he has no conflict of interest. Kelly G. Fernandes Dantas declares that she has no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siqueira, J.S., Pereira, J.B., Lemos, M.S. et al. Optimization of a Digestion Method Using Diluted Acid in Bee Pollen Samples for Determination of Fe, Mn, and Zn by Flame Atomic Absorption Spectrometry. Food Anal. Methods 10, 759–763 (2017). https://doi.org/10.1007/s12161-016-0625-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-016-0625-0

Keywords

Navigation