Skip to main content

Advertisement

Log in

Molecular targeting therapy with angiotensin II receptor blocker for prostatic cancer

  • Review
  • Published:
Oncology Reviews

Abstract

Angiotensin II (Ang-II) plays a key role as a vasoconstrictor in controlling blood pressure and electrolyte/fluid homeostasis. Recently it has also been shown that this peptide is a cytokine, acting as a growth factor in cardiovascular and stromal cells. In addition, the physiological function of Ang-II seems to be similar in prostate cancer and stromal cells. It is widely assumed that Ang-II facilitates the growth of both cells, and its receptor blockers (ARBs) have the potential to inhibit the growth of various cancer cells and tumors through the Ang-II receptor type 1 (AT1 receptor). The mechanism of cell growth inhibition by ARBs has been considered to be that of suppression of the signal transduction systems activated by growth factors or cytokines in prostate cancer cells, and suppression of angiogenesis. This review highlights the possible use of ARBs as novel agents for prostatic diseases including prostate cancer and benign hypertrophy, and covers related literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Uemura H, Nakaigawa N, Ishiguro H, Kubota Y (2005) Antiproliferative efficacy of angiotensin II receptor blockers in prostate cancer. Curr Cancer Drug Targets 5:307–323

    Article  PubMed  CAS  Google Scholar 

  2. Jemal A, Thomas A, Murray T, Thun M (2002) Cancer statistics. CA Cancer J Clin 52:23–47

    Article  PubMed  Google Scholar 

  3. Miyamoto H, Messing EM, Chang C (2004) Androgen deprivation therapy for prostate cancer: current status and future prospects. Prostate 61:332–353

    Article  PubMed  CAS  Google Scholar 

  4. Uemura H, Ishiguro H, Nakaigawa N et al (2003) Angiotensin II receptor blocker shows antiproliferative activity in prostate cancer cells: a possibility of tyrosine kinase inhibitor of growth factor. Mol Cancer Ther 2:1139–1147

    PubMed  CAS  Google Scholar 

  5. Kambayashi Y, Bardhan S, Takahashi K et al (1993) Molecular cloning of a novel angiotensin II receptor isoform involved in phosphotyrosine phosphatase inhibition. J Biol Chem 68:24543–24546

    Google Scholar 

  6. Mukoyama M, Nakajima M, Horiuchi M et al (1993) Expression cloning of type 2 angiotensin II receptor reveals a unique class of seven-transmembrane receptors. J Biol Chem 268:24539–24542

    PubMed  CAS  Google Scholar 

  7. Tahmasebi M, Puddefoot JR, Inwang ER et al (1998) Transcription of the prorenin gene in normal and diseased breast. Eur J Cancer 34:1777–1782

    Article  PubMed  CAS  Google Scholar 

  8. Marsigliante S, Resta L, Muscella A et al (1996) AT1 angiotensin II receptor subtype in the human larynx and squamous laryngeal carcinoma. Cancer Lett 110:19–27

    Article  PubMed  CAS  Google Scholar 

  9. Fujimoto Y, Sasaki T, Tsuchida A, Chayama K (2001) Angiotensin II type 1 receptor expression in human pancreatic cancer and growth inhibition by angiotensin II type 1 receptor antagonist. FEBS Lett 495:197–200

    Article  PubMed  CAS  Google Scholar 

  10. Ino K, Uehara C, Kikkawa F et al (2003) Enhancement of aminopeptidase A expression during angiotensin II-induced choriocarcinoma cell proliferation through AT1 receptor involving protein kinase C-and mitogen-activated protein kinase-dependent signalling pathway. J Clin Endocrinol Metab 88:3973–3982

    Article  PubMed  CAS  Google Scholar 

  11. Tsuzuki S, Ichiki T, Nakakubo H et al (1994) Molecular cloning and expression of the gene encoding human angiotensin II type 2 receptor. Biochem Biophys Res Commun 200:1449–1454

    Article  PubMed  CAS  Google Scholar 

  12. Takagi T, Nakano Y, Takekoshi S et al (2002) Hemizygous mice for the angiotensin II type 2 receptor gene have attenuated susceptibility to azoxymethane-induced colon tumorigenesis. Carcinogenesis 23:1235–1241

    Article  PubMed  CAS  Google Scholar 

  13. Cao Z, Bonnet F, Candido R et al (2002) Angiotensin type 2 receptor antagonism confers renal protection in a rat model of progressive renal injury. J Am Soc Nephrol 13:1773–1787

    Article  PubMed  CAS  Google Scholar 

  14. Zhang X, Lassila M, Cooper ME, Cao Z (2004) Retinal expression of vascular endothelial growth factor is mediated by angiotensin type 1 and type 2 receptors. Hypertension 43:276–281

    Article  PubMed  CAS  Google Scholar 

  15. Wolf G, Wenzel U, Burns KD et al (2002) Angiotensin II activates nuclear transcription factor-kappaB through AT1 and AT2 receptors. Kidney Int 61:1986–1995

    Article  PubMed  CAS  Google Scholar 

  16. Levy BI, Benessiano J, Henrion D et al (1996) Chronic blockade of AT2-subtype receptors prevents the effect of angiotensin II on the rat vascular structure. J Clin Invest 98:418–425

    PubMed  CAS  Google Scholar 

  17. Fabiani ME, Johnston CI (1999) Spectrum of use for the angiotensin-receptor blocking drugs. Curr Hypertens Rep 1:394–401

    Article  PubMed  CAS  Google Scholar 

  18. Chung O, Kuhl H, Stoll M, Unger T (1998) Physiological and pharmacological implications of AT1 versus AT2 receptors. Kidney Int Suppl 67:S95–S99

    Article  PubMed  CAS  Google Scholar 

  19. Dzau VJ (1994) Cell biology and genetics of angiotensin in cardiovascular disease. J Hypertens [Suppl 12]:S3–S10

  20. Huckle WR, Earp HS (1994) Regulation of cell proliferation and growth by angiotensin II. Prog Growth Factor Res 5:177–194

    Article  PubMed  CAS  Google Scholar 

  21. Rosendorff C (1996) The renin-angiotensin system and vascular hypertrophy. J Am Coll Cardiol 28:803–812

    Article  PubMed  CAS  Google Scholar 

  22. Bader M, Peters J, Baltatu O, et al (2001) Tissue renin-angiotensin systems: new insights from experimental animal models in hypertension research. J Mol Med 79:76–102

    Article  PubMed  CAS  Google Scholar 

  23. Engeli S, Negrel R, Sharma AM (2000) Physiology and pathophysiology of the adipose tissue renin-angiotensin system. Hypertension 35:1270–1277

    PubMed  CAS  Google Scholar 

  24. Davisson RL (2003) Physiological genomic analysis of the brain renin-angiotensin system. Am J Physiol Regul Integr Comp Physiol 285:R498–R511.

    PubMed  Google Scholar 

  25. Mulrow PJ (1993) The intrarenal renin-angiotensin system. Curr Opin Nephrol Hypertens 2:41–44

    Article  PubMed  CAS  Google Scholar 

  26. Chappell MC, Diz DI, Gallagher PE (2001) The renin-angiotensin system and the exocrine pancreas. JOP 2:33–39

    PubMed  CAS  Google Scholar 

  27. Speth RC, Daubert DL, Grove KL (1999) Angiotensin II: a reproductive hormone too? Regul Pept 79:25–40

    Article  PubMed  CAS  Google Scholar 

  28. Uemura H, Hasumi H, Ishiguro H et al (2006) Renin-angiotensin system is an important factor in hormone refractory prostate cancer. Prostate 66:822–830

    Article  PubMed  CAS  Google Scholar 

  29. Nielsen AH, Schauser KH, Poulsen K (2000) Current topic: the uteroplacental renin-angiotensin system. Placenta 21:468–477

    Article  PubMed  CAS  Google Scholar 

  30. Klickstein LB, Kaempfer CE, Wintroub BU (1982) The granulocyte-angiotensin system. Angiotensin I-converting activity of cathepsin G. J Biol Chem 257:15042–15046

    PubMed  CAS  Google Scholar 

  31. Schiller PW, Demassieux S, Boucher R (1976) Substrate specificity of tonin from rat submaxillary gland. Circ Res 39:629–632

    PubMed  CAS  Google Scholar 

  32. Baltatu O, Nishimura H, Hoffmann S et al (1997) High levels of human chymase expression in the pineal and pituitary glands. Brain Res 752:269–278

    Article  PubMed  CAS  Google Scholar 

  33. Dinh DT, Frauman AG, Somers GR et al (2002) Evidence for activation of the renin-angiotensin system in the human prostate: increased angiotensin II and reduced AT(1) receptor expression in benign prostatic hyperplasia. J Pathol 196:213–219

    Article  PubMed  CAS  Google Scholar 

  34. Nassis L, Frauman AG, Ohishi M et al (2001) Localization of angiotensin-converting enzyme in the human prostate: pathological expression in benign prostatic hyperplasia. J Pathol 195:571–579

    Article  PubMed  CAS  Google Scholar 

  35. Leung PS, Chan HC, Wong PY (1998) Immunohistochemical localization of angiotensin II in the mouse pancreas. Histochem J 30:21–25

    Article  PubMed  CAS  Google Scholar 

  36. Dostal DE, Baker KM (1999) The cardiac renin-angiotensin system: conceptual, or a regulator of cardiac function? Circ Res 85:643–650

    PubMed  CAS  Google Scholar 

  37. Kunimoto M, Soma M, Kanmatsuse K (1998) Production of eicosanoids and angiotensin II in resistance vessels in spontaneously hypertensive rats. Clin Exp Pharmacol Physiol 25:430–434

    Article  PubMed  CAS  Google Scholar 

  38. Navar LG, Imig JD, Zou L et al (1997) Intrarenal production of angiotensin II. Semin Nephrol 17:412–422

    PubMed  CAS  Google Scholar 

  39. Dinh DT, Frauman AG, Casley DJ et al (2001) Angiotensin AT(4) receptors in the normal human prostate and benign prostatic hyperplasia. Mol Cell Endocrinol 184:187–192

    Article  PubMed  CAS  Google Scholar 

  40. Dinh DT, Frauman AG, Sourial M et al (2001) Identification, distribution, and expression of angiotensin II receptors in the normal human prostate and benign prostatic hyperplasia. Endocrinology 142:1349–1356

    Article  PubMed  CAS  Google Scholar 

  41. Fabiani ME, Sourial M, Thomas WG et al (2001) Angiotensin II enhances noradrenaline release from sympathetic nerves of the rat prostate via a novel angiotensin receptor: implications for the pathophysiology of benign prostatic hyperplasia. J Endocrinol 171:97–108

    Article  PubMed  CAS  Google Scholar 

  42. O’Mahony OA, Barker S, Puddefoot JR et al (2005) Synthesis and secretion of angiotensin II by the prostate gland in vitro. Endocrinology 146:392–398

    Article  PubMed  CAS  Google Scholar 

  43. Chen L, Re RN, Prakash O et al (1991) Angiotensin-converting enzyme inhibition reduces neuroblastoma cell growth rate. Proc Soc Exp Biol Med 196:280–283

    PubMed  CAS  Google Scholar 

  44. Reddy MK, Baskaran K, Molteni A (1995) Inhibitors of angiotensin-converting enzyme modulate mitosis and gene expression in pancreatic cancer cells. Proc Soc Exp Biol Med 210:221–226

    PubMed  CAS  Google Scholar 

  45. Hii SI, Nicol DL, Gotley DC et al (1998) Captopril inhibits tumour growth in a xenograft model of human renal cell carcinoma. Br J Cancer 77:880–883

    PubMed  CAS  Google Scholar 

  46. Volpert OV, Ward WF, Lingen MW et al (1996) Captopril inhibits angiogenesis and slows the growth of experimental tumors in rats. J Clin Invest 98:671–679

    PubMed  CAS  Google Scholar 

  47. Lever AF, Hole DJ, Gillis CR et al (1998) Do inhibitors of angiotensin-Iconverting enzyme protect against risk of cancer? Lancet 352:179–184

    Article  PubMed  CAS  Google Scholar 

  48. Ronquist G, Rodriguez LA, Ruigomez A et al (2004) Association between captopril, other antihypertensive drugs and risk of prostate cancer. Prostate 58:50–56

    Article  PubMed  CAS  Google Scholar 

  49. Grossman E, Messerli FH, Goldbourt U (2002) Carcinogenicity of antihypertensive therapy. Curr Hypertens Rep 4:195–201

    Article  PubMed  Google Scholar 

  50. Uemura H, Ishiguro H, Nagashima Y et al (2005) Antiproliferative activity of angiotensin II receptor blocker through cross-talk between stromal and epithelial prostate cancer cells. Mol Cancer Ther 4:1699–1709

    Article  PubMed  CAS  Google Scholar 

  51. Logothetis CJ, Wu KK, Finn LD et al (2001) Phase I trial of the angiogenesis inhibitor TNP-470 for progressive androgen-independent prostate cancer. Clin Cancer Res 7:1198–1203

    PubMed  CAS  Google Scholar 

  52. Uemura H, Hasumi H, Kawahara T et al (2005) Pilot study of angiotensin II receptor blocker in advanced hormone-refractory prostate cancer. Int J Clin Oncol 10:405–410

    Article  PubMed  CAS  Google Scholar 

  53. Mavromoustakos T, Apostolopoulos V, Matsoukas J (2001) Antihypertensive drugs that act on renin-angiotensin system with emphasis in AT(1) antagonists. Mini Rev Med Chem 1:207–217

    Article  PubMed  CAS  Google Scholar 

  54. Kurtz TW, Pravenec M (2004) Antidiabetic mechanisms of angiotensin-converting enzyme inhibitors and angiotensin II receptor antagonists: beyond the renin-angiotensin system. J Hypertens 22:2253–2261

    Article  PubMed  CAS  Google Scholar 

  55. Benson SC, Pershadsingh HA, Ho CI et al (2004) Identification of telmisartan as a unique angiotensin II receptor antagonist with selective PPARgamma-modulating activity. Hypertension 43:993–1002

    Article  PubMed  CAS  Google Scholar 

  56. Lehmann JM, Moore LB, Smith-Oliver TA et al (1995) An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J Biol Chem 270:12953–12956

    Article  PubMed  CAS  Google Scholar 

  57. Rosen ED, Spiegelman BM (2001) PPAR-gamma: a nuclear regulator of metabolism, differentiation, and cell growth. J Biol Chem 276:37731–37734

    Article  PubMed  CAS  Google Scholar 

  58. Willson TM, Brown PJ, Sternbach DD et al (2000) The PPARs: from orphan receptors to drug discovery. J Med Chem 43:527–550

    Article  PubMed  CAS  Google Scholar 

  59. Berger J, Moller DE (2002). The mechanisms of action of PPARs. Annu Rev Med 53:409–435

    Article  PubMed  CAS  Google Scholar 

  60. Picard F, Auwerx J (2002) PPAR(gamma) and glucose homeostasis. Annu Rev Nutr 22:167–197

    Article  PubMed  CAS  Google Scholar 

  61. Walczak R, Tontonoz P (2002) PPARadigms and PPARadoxes: expanding roles for PPARgamma in the control of lipid metabolism. J Lipid Res 43:177–186

    PubMed  CAS  Google Scholar 

  62. Ishiguro H, Ishiguro Y, Kubota Y et al (2007) Regulation of prostate cancer cell growth and PSA expression by angiotensin II receptor blocker with peroxisome proliferator-activated receptor gamma ligand-like action. Prostat, in press.

  63. Shappell SB, Gupta RA, Manning S et al (2001) 15S Hydroxyeicosatetraenoic acid activates peroxisome proliferator-activated receptor gamma and inhibits proliferation in PC3 prostate carcinoma cells. Cancer Res 61:497–503

    PubMed  CAS  Google Scholar 

  64. Nwankwo JO, Robbins ME (2001) Peroxisome proliferator-activated receptor-gamma expression in human malignant and normal brain, breast and prostate-derived cells. Prostaglandins Leukot Essent Fatty Acids 64:241–245

    Article  PubMed  CAS  Google Scholar 

  65. Segawa Y, Yoshimura R, Hase T et al (2002) Expression of peroxisome proliferator-activated receptor (PPAR) in human prostate cancer. Prostate 51:108–116

    Article  PubMed  CAS  Google Scholar 

  66. Rangwala SM, Lazar MA (2002) The dawn of the SPPARMs? Sci STKE 121:PE9

    Google Scholar 

  67. Berger JP, Petro AE, Macnaul KL et al (2003) Distinct properties and advantages of a novel peroxisome proliferator-activated protein [gamma] selective modulator. Mol Endocrinol 17:662–676

    Article  PubMed  CAS  Google Scholar 

  68. Derosa G, Ragonesi PD, Mugellini A et al (2004) Effects of telmisartan compared with eprosartan on blood pressure control, glucose metabolism and lipid profile in hypertensive, type 2 diabetic patients: a randomized, double-blind, placebo-controlled 12-month study. Hypertens Res 27:457–464

    Article  PubMed  CAS  Google Scholar 

  69. Touyz RM, Deng LY, He G et al (1999) Angiotensin II stimulates DNA and protein synthesis in vascular smooth muscle cells from human arteries: role of extracellular signal-regulated kinases. J Hypertens 17:907–916

    Article  PubMed  CAS  Google Scholar 

  70. Muscella A, Greco S, Elia MG et al (2002) Angiotensin II stimulation of Na+/K+ATPase activity and cell growth by calcium-independent pathway in MCF-7 breast cancer cells. J Endocrinol 173:315–323

    Article  PubMed  CAS  Google Scholar 

  71. Williams B, Baker AQ, Gallacher B et al (1995) Angiotensin II increases vascular permeability factor gene expression by human vascular smooth muscle cells. Hypertension 25:913–917

    PubMed  CAS  Google Scholar 

  72. Chua CC, Hamdy RC, Chua BH (1998) Upregulation of vascular endothelial growth factor by angiotensin II in rat heart endothelial cells. Biochim Biophys Acta 1401:187–194

    Article  PubMed  CAS  Google Scholar 

  73. Pupilli C, Lasagni L, Romagnani P et al (1999) Angiotensin II stimulates the synthesis and secretion of vascular permeability factor/vascular endothelial growth factor in human mesangial cells. J Am Soc Nephrol 10:245–255

    Article  PubMed  CAS  Google Scholar 

  74. Suganuma T, Ino K, Shibata K et al (2004) Regulation of aminopeptidase A expression in cervical carcinoma: role of tumor-stromal interaction and vascular endothelial growth factor. Lab Invest 84:639–648

    Article  PubMed  CAS  Google Scholar 

  75. Kikkawa F, Mizuno M, Shibata K et al (2004) Activation of invasiveness of cervical carcinoma cells by angiotensin II. Am J Obstet Gynecol 190:1258–1263

    Article  PubMed  CAS  Google Scholar 

  76. Watanabe Y, Shibata K, Kikkawa F et al (2003) Adipocyte-derived leucine aminopeptidase suppresses angiogenesis in human endometrial carcinoma via renin-angiotensin system. Clin Cancer Res 9:6497–6503

    PubMed  CAS  Google Scholar 

  77. Yoshiji H, Kuriyama S, Fukui H (2002) Angiotensin-I-converting enzyme inhibitors may be an alternative anti-angiogenic strategy in the treatment of liver fibrosis and hepato-cellular carcinoma. Possible role of vascular endothelial growth factor. Tumour Biol 23:348–356

    Article  PubMed  CAS  Google Scholar 

  78. Yoshiji H, Kuriyama S, Kawata M et al (2001) The angiotensin-I-converting enzyme inhibitor perindopril suppresses tumor growth and angiogenesis: possible role of the vascular endothelial growth factor. Clin Cancer Res 7:1073–1078

    PubMed  CAS  Google Scholar 

  79. Miyajima A, Kosaka T, Asano T et al (2002) Angiotensin II type I antagonist prevents pulmonary metastasis of murine renal cancer by inhibiting tumor angiogenesis. Cancer Res 62:4176–4179

    PubMed  CAS  Google Scholar 

  80. Suganuma T, Ino K, Shibata K et al (2005) Functional expression of the angiotensin II type 1 receptor in human ovarian carcinoma cells and its blockade therapy resulting in suppression of tumor invasion, angiogenesis, and peritoneal dissemination. Clin Cancer Res 11:2686–2694

    Article  PubMed  CAS  Google Scholar 

  81. Muramatsu M, Katada J, Hayashi I et al (2000) Chymase as a proangiogenic factor. A possible involvement of chymase-angiotensin-dependent pathway in the hamster sponge angiogenesis model. J Biol Chem 275:5545–5552

    Article  PubMed  CAS  Google Scholar 

  82. Lin J, Freeman MR (2003) Transactivation of ErbB1 and ErbB2 receptors by angiotensin II in normal human prostate stromal cells. Prostate 54:1–7

    Article  PubMed  CAS  Google Scholar 

  83. Scher HI, Sarkis A, Reuter V et al (1995) Changing pattern of expression of the epidermal growth factor receptor and transforming growth factor alpha in the progression of prostatic neoplasms. Clin Cancer Res 1:545–550

    PubMed  CAS  Google Scholar 

  84. Bok RA, Halabi S, Fei DT et al (2001) Vascular endothelial growth factor and basic fibroblast growth factor urine levels as predictors of outcome in hormone-refractory prostate cancer patients: a cancer and leukemia group B study. Cancer Res 61:2533–2536

    PubMed  CAS  Google Scholar 

  85. Drachenberg DE, Elgamal AA, Rowbotham R et al (1999) Circulating levels of interleukin-6 in patients with hormone refractory prostate cancer. Prostate 41:127–133

    Article  PubMed  CAS  Google Scholar 

  86. Voronov E, Shouval DS, Krelin Y et al (2003) IL-1 is required for tumor invasiveness and angiogenesis. Proc Natl Acad Sci USA 10:2645–2650

    Article  CAS  Google Scholar 

  87. Kuniyasu H, Troncoso P, Johnston D et al (2000) Relative expression of type IV collagenase, E-cadherin, and vascular endothelial growth factor/vascular permeability factor in prostatectomy specimens distinguishes organ-confined from pathologically advanced prostate cancers. Clin Cancer Res 6:2295–2308

    PubMed  CAS  Google Scholar 

  88. Ohta M, Kitadai Y, Tanaka S (2003) Monocyte chemoattractant protein-1 expression correlates with macrophage infiltration and tumor vascularity in human gastric carcinomas. Int J Oncol 22:773–778

    PubMed  CAS  Google Scholar 

  89. Helmy A, Jalan R, Newby DE (2000) Role of angiotensin II in regulation of basal and sympathetically stimulated vascular tone in early and advanced cirrhosis. Gastroenterology 118:565–572

    Article  PubMed  CAS  Google Scholar 

  90. Bataller R, Gines P, Nicolas JM et al (2000) Angiotensin II induces contraction and proliferation of human hepatic stellate cells. Gastroenterology 118:1149–1156

    Article  PubMed  CAS  Google Scholar 

  91. Yoshiji H, Kuriyama S, Yoshii J et al (2001) Angiotensin-II type 1 receptor interaction is a major regulator for liver fibrosis development in rats. Hepatology 34:745–750

    PubMed  CAS  Google Scholar 

  92. Rich AR (1979) Classics in oncology. On the frequency of occurrence of occult carcinoma of the prostate: Arnold Rice Rich, M.D., Journal of Urology 33:3, 1935. CA Cancer J Clin 29:115–119

    PubMed  CAS  Google Scholar 

  93. Nakayama M, Bennett CJ, Hicks JL et al (2003) Hypermethylation of the human glutathione S-transferase-pi gene (GSTP1) CpG island is present in a subset of proliferative inflammatory atrophy lesions but not in normal or hyperplastic epithelium of the prostate: a detailed study using laser-capture microdissection. Am J Pathol 163:923–933

    PubMed  CAS  Google Scholar 

  94. Palapattu GS, Sutcliffe S, Bastian PJ et al (2005) Prostate carcinogenesis and inflammation: emerging insights. Carcinogenesis 26:1170–1181

    Article  PubMed  CAS  Google Scholar 

  95. Brasier AR, Recinos A, Eledrisi MS (2002) Vascular inflammation and the renin-angiotensin system. Arterioscler Thromb Vasc Biol 22:1257–1266

    Article  PubMed  CAS  Google Scholar 

  96. Suzuki Y, Ruiz-Ortega M, Lorenzo O et al (2003) Inflammation and angiotensin II. Int J Biochem Cell Biol 35:881–900

    Article  PubMed  CAS  Google Scholar 

  97. Griendling KK, Minieri CA, Ollerenshaw JD et al (1994) Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 74:1141–1148

    PubMed  CAS  Google Scholar 

  98. Rajagopalan S, Kurz S, Munzel T et al (1996) Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest 97:1916–1923

    Article  PubMed  CAS  Google Scholar 

  99. Redman C, Scott JA, Baines AT (1998) Inhibitory effect of selenomethionine on the growth of three selected human tumor cell lines. Cancer Lett 125:103–110

    Article  PubMed  CAS  Google Scholar 

  100. Shklar G, Oh SK (2000) Experimental basis for cancer prevention by vitamin E. Cancer Invest 18:214–222

    PubMed  CAS  Google Scholar 

  101. Pathak SK, Sharma RA, Steward WP et al (2005) Oxidative stress and cyclooxy-genase activity in prostate carcinogenesis: targets for chemopreventive strategies. Eur J Cancer 41:61–70

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroji Uemura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uemura, H., Ishiguro, H. & Kubota, Y. Molecular targeting therapy with angiotensin II receptor blocker for prostatic cancer. Oncol Rev 1, 3–13 (2007). https://doi.org/10.1007/s12156-007-0002-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12156-007-0002-8

Key words

Navigation