Skip to main content
Log in

Switchable Solvent-Catalyzed Direct Transesterification of Insect Biomass for Biodiesel Production

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

DBU (1,8-diazabicyclo[5.4.0]undec-7-ene), a polarity switchable solvent, has been recognized as a green solvent for oil extraction and as a promising catalyst for transesterification. This paper proposes a novel method that combines the dual functions of DBU in direct transesterification. The effects of reaction parameters on the direct transesterification of black soldier fly larvae with methanol when using DBU as both a catalyst and solvent were investigated, and a 96.2% biodiesel yield was achieved at a DBU-to-biomass ratio of 16:1 (mL/g), methanol-to-biomass ratio of 8:1 (mL/g), temperature of 110 °C, and reaction time of 60 min. Remarkably, because of its polarity reversibility, DBU was easily separated and recovered from the reaction solution through phase separation and could be repeatedly used up to 10 times without a considerable loss of catalytic activity. DBU-catalyzed direct transesterification is a green, promising, and cost-effective approach for biodiesel preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Arumugam A, Ponnusami V (2018) Biodiesel production from Calophyllum inophyllum oil a potential non-edible feedstock: an overview. Renew Energy 131:459–471

    Article  CAS  Google Scholar 

  2. Rana A, Alghazal MS, Alsaeedi MM, Bakdash RS, Basheer C, Al-Saadi AA (2019) Preparation and characterization of biomass carbon–based solid acid catalysts for the esterification of marine algae for biodiesel production. BioEnergy Res 12:433–442

    Article  CAS  Google Scholar 

  3. Hosseinzadeh-Bandbafha H, Tabatabaei M, Aghbashlo M, Khanali M, Demirbas A (2018) A comprehensive review on the environmental impacts of diesel/biodiesel additives. Energy Convers Manag 174:579–614

    Article  CAS  Google Scholar 

  4. Jiao Y, Liu R, Zhang Z, Yang C, Zhou G, Dong S, Liu W (2019) Comparison of combustion and emission characteristics of a diesel engine fueled with diesel and methanol-Fischer-Tropsch diesel-biodiesel-diesel blends at various altitudes. Fuel 243:52–59

    Article  CAS  Google Scholar 

  5. Yang Y, Fu T, Bao W, Xie GH (2017) Life cycle analysis of greenhouse gas and PM 2.5 emissions from restaurant waste oil used for biodiesel production in China. BioEnergy Res 10:199–207

    Article  CAS  Google Scholar 

  6. Ambat I, Srivastava V, Sillanpää M (2018) Recent advancement in biodiesel production methodologies using various feedstock: a review. Renew Sust Energ Rev 90:356–369

    Article  CAS  Google Scholar 

  7. Ong HC, Milano J, Silitonga AS, Hassan MH, Shamsuddin AH, Wang CT, Mahlia TMI, Siswantoro J, Kusumo F, Sutrisno J (2019) Biodiesel production from Calophyllum inophyllum-Ceiba pentandra oil mixture: optimization and characterization. J Clean Prod 219:183–198

    Article  CAS  Google Scholar 

  8. Su CH, Nguyen HC, Pham UK, Nguyen ML, Juan HY (2018) Biodiesel production from a novel nonedible feedstock, soursop (Annona muricata L.) seed oil. Energies 11:2562

    Article  CAS  Google Scholar 

  9. Nguyen HC, Liang SH, Doan TT, Su CH, Yang PC (2017) Lipase-catalyzed synthesis of biodiesel from black soldier fly (Hermetica illucens): optimization by using response surface methodology. Energy Convers Manag 145:335–342

    Article  CAS  Google Scholar 

  10. Surendra K, Olivier R, Tomberlin JK, Jha R, Khanal SK (2016) Bioconversion of organic wastes into biodiesel and animal feed via insect farming. Renew Energy 98:197–202

    Article  CAS  Google Scholar 

  11. Zheng L, Li Q, Zhang J, Yu Z (2012) Double the biodiesel yield: rearing black soldier fly larvae, Hermetia illucens, on solid residual fraction of restaurant waste after grease extraction for biodiesel production. Renew Energy 41:75–79

    Article  CAS  Google Scholar 

  12. Li Q, Zheng L, Cai H, Garza E, Yu Z, Zhou S (2011) From organic waste to biodiesel: black soldier fly, Hermetia illucens, makes it feasible. Fuel 90:1545–1548

    Article  CAS  Google Scholar 

  13. Silva LN, Cardoso CC, Pasa VM (2016) Production of cold-flow quality biodiesel from high-acidity on-edible oils—esterification and transesterification of Macauba (Acrocomia aculeata) oil using various alcohols. BioEnergy Rese 9:864–873

    Article  CAS  Google Scholar 

  14. Nguyen HC, Liang SH, Chen SS, Su CH, Lin JH, Chien CC (2018) Enzymatic production of biodiesel from insect fat using methyl acetate as an acyl acceptor: optimization by using response surface methodology. Energy Convers Manag 158:168–175

    Article  CAS  Google Scholar 

  15. Su CH, Nguyen HC, Bui TL, Huang DL (2019) Enzyme-assisted extraction of insect fat for biodiesel production. J Clean Prod 223:436–444

    Article  CAS  Google Scholar 

  16. Nguyen HC, Liang SH, Li SY, Su CH, Chien CC, Chen YJ, Huong DTM (2018) Direct transesterification of black soldier fly larvae (Hermetia illucens) for biodiesel production. J Taiwan Inst Chem Eng 85:165–169

    Article  CAS  Google Scholar 

  17. Liu Y, Tu Q, Knothe G, Lu M (2017) Direct transesterification of spent coffee grounds for biodiesel production. Fuel 199:157–161

    Article  CAS  Google Scholar 

  18. Kakkad H, Khot M, Zinjarde S, RaviKumar A (2015) Biodiesel production by direct in situ transesterification of an oleaginous tropical mangrove fungus grown on untreated agro-residues and evaluation of its fuel properties. BioEnergy Res 8:1788–1799

    Article  CAS  Google Scholar 

  19. Ehimen E, Sun Z, Carrington C (2010) Variables affecting the in situ transesterification of microalgae lipids. Fuel 89:677–684

    Article  CAS  Google Scholar 

  20. Zhang Y, Li Y, Zhang X, Tan T (2015) Biodiesel production by direct transesterification of microalgal biomass with co-solvent. Bioresour Technol 196:712–715

    Article  CAS  PubMed  Google Scholar 

  21. Martínez A, Mijangos GE, Romero-Ibarra IC, Hernández-Altamirano R, Mena-Cervantes VY (2019) In-situ transesterification of Jatropha curcas L. seeds using homogeneous and heterogeneous basic catalysts. Fuel 235:277–287

    Article  CAS  Google Scholar 

  22. Patil PD, Gude VG, Mannarswamy A, Cooke P, Nirmalakhandan N, Lammers P, Deng S (2012) Comparison of direct transesterification of algal biomass under supercritical methanol and microwave irradiation conditions. Fuel 97:822–831

    Article  CAS  Google Scholar 

  23. Bauer G, Lima S, Chenevard J, Sugnaux M, Fischer F (2017) Biodiesel via in situ wet microalgae biotransformation: zwitter-type ionic liquid supported extraction and transesterification. ACS Sustain Chem Eng 5:1931–1937

    Article  CAS  Google Scholar 

  24. López EN, Medina AR, Cerdán LE, Moreno PAG, Sánchez MDM, Grima EM (2016) Fatty acid methyl ester production from wet microalgal biomass by lipase-catalyzed direct transesterification. Biomass Bioenergy 93:6–12

    Article  CAS  Google Scholar 

  25. Park JY, Park MS, Lee YC, Yang JW (2015) Advances in direct transesterification of algal oils from wet biomass. Bioresour Technol 184:267–275

    Article  CAS  PubMed  Google Scholar 

  26. Nguyen HC, Huong DTM, Juan HY, Su CH, Chien CC (2018) Liquid lipase-catalyzed esterification of oleic acid with methanol for biodiesel production in the presence of superabsorbent polymer: optimization by using response surface methodology. Energies 11(5):1085

    Article  CAS  Google Scholar 

  27. Son J, Kim B, Park J, Yang J, Lee JW (2018) Wet in situ transesterification of spent coffee grounds with supercritical methanol for the production of biodiesel. Bioresour Technol 259:465–468

    Article  CAS  PubMed  Google Scholar 

  28. Wang S, Zheng C, Zhao J, Li X, Lu H (2017) Extracting and recovering diesel from oil-based drill cuttings using switchable hydrophilic solvents. Chem Eng Res Des 128:27–36

    Article  CAS  Google Scholar 

  29. Kumar SJ, Kumar GV, Dash A, Scholz P, Banerjee R (2017) Sustainable green solvents and techniques for lipid extraction from microalgae: a review. Algal Res 21:138–147

    Article  Google Scholar 

  30. Samorì C, Barreiro DL, Vet R, Pezzolesi L, Brilman DW, Galletti P, Tagliavini E (2013) Effective lipid extraction from algae cultures using switchable solvents. Green Chem 15:353–356

    Article  CAS  Google Scholar 

  31. Jessop PG, Heldebrant DJ, Li X, Eckert CA, Liotta CL (2005) Green chemistry: reversible nonpolar-to-polar solvent. Nature 436:1102

    Article  CAS  PubMed  Google Scholar 

  32. Du Y, Schuur B, Samorì C, Tagliavini E, Brilman DWF (2013) Secondary amines as switchable solvents for lipid extraction from non-broken microalgae. Bioresour Technol 149:253–260

    Article  CAS  PubMed  Google Scholar 

  33. Phan L, Brown H, White J, Hodgson A, Jessop PG (2009) Soybean oil extraction and separation using switchable or expanded solvents. Green Chem 11:53–59

    Article  CAS  Google Scholar 

  34. Bao J, Liu Y, Parnas R, Liang B, Lu H (2015) Inter-solubility of product systems in biodiesel production from Jatropha curcas L. oil with the switchable solvent DBU/methanol. RSC Adv 5:8311–8317

    Article  CAS  Google Scholar 

  35. Xue D, Mu Y, Mao Y, Yang T, Xiu Z (2014) Kinetics of DBU-catalyzed transesterification for biodiesel in the DBU–ethanol switchable-polarity solvent. Green Chem 16:3218–3223

    Article  CAS  Google Scholar 

  36. Cao X, Xie H, Wu Z, Shen H, Jing B (2012) Phase-switching homogeneous catalysis for clean production of biodiesel and glycerol from soybean and microbial lipids. ChemCatChem 4:1272–1278

    Article  CAS  Google Scholar 

  37. Nguyen HC, Nguyen ML, Wang FM, Liang SH, Bui TL, Ha HH, Su CH (2019) Using switchable solvent as a solvent and catalyst for in situ transesterification of spent coffee grounds for biodiesel synthesis. Bioresour Technol 289:121770

    Article  PubMed  CAS  Google Scholar 

  38. Zeng S, Tao C, Parnas R, Jiang W, Liang B, Liu Y, Lu H (2016) Jatropha curcas L. oil extracted by switchable solvent N, N-dimethylcyclohexylamine for biodiesel production. Chinese J Chem Eng 24:1640–1646

    Article  CAS  Google Scholar 

  39. Du Y, Schuur B, Brilman DW (2017) Maximizing lipid yield in Neochloris oleoabundans algae extraction by stressing and using multiple extraction stages with N-Ethylbutylamine as switchable solvent. Ind Eng Chem Res 56:8073–8080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Munshi MK, Biradar PS, Gade SM, Rane VH, Kelkar AA (2014) Efficient synthesis of glycerol carbonate/glycidol using 1, 8-diazabicyclo [5.4.0] undec-7-ene (DBU) based ionic liquids as catalyst. RSC Adv 4:17124–17128

    Article  CAS  Google Scholar 

  41. Canakci M, Sanli H (2008) Biodiesel production from various feedstocks and their effects on the fuel properties. J Ind Microbiol Biotechnol 35:431–441

    Article  CAS  PubMed  Google Scholar 

  42. Ramos MJ, Fernández CM, Casas A, Rodríguez L, Pérez Á (2009) Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour Technol 100:261–268

    Article  CAS  PubMed  Google Scholar 

  43. Wang R, Zhou WW, Hanna MA, Zhang YP, Bhadury PS, Wang Y, Song BA, Yang S (2012) Biodiesel preparation, optimization, and fuel properties from non-edible feedstock, Datura stramonium L. Fuel 91:182–186

    Article  CAS  Google Scholar 

Download references

Funding

The financial grant was provided by the Ministry of Science and Technology of Taiwan, R.O.C (107-2221-E-131-033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chia-Hung Su.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, H.C., Nguyen, M.L., Liang, SH. et al. Switchable Solvent-Catalyzed Direct Transesterification of Insect Biomass for Biodiesel Production. Bioenerg. Res. 13, 563–570 (2020). https://doi.org/10.1007/s12155-019-10085-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-019-10085-8

Keywords

Navigation