Skip to main content
Log in

Variety Trial and Pyrolysis Potential of Kenaf Grown in Midwest United States

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Kenaf (Hibiscus cannabinus L.) has potential as an annual herbaceous biomass feedstock. It is not typically grown in the American Midwest; however, kenaf may be attractive as an alternative crop for Iowa and the Corn Belt. In this study, seven kenaf varieties were grown in Iowa and evaluated for their productivity. More specifically, our research questions were the following: (1) how do kenaf varieties perform in Iowa for yield? (2) How does fiber morphology and quality differ among varieties and among core and bast fiber? And (3) What potential does kenaf (bast and core) have for producing fuel using fast pyrolysis? Tainung 2, one of the varieties, reached the best yield in Central Iowa over multiple years. Bast kenaf contained 8 % more cellulose and 23 % less hemicellulose than the core but it varied among varieties. Also, regardless of variety, core was composed of 40 % more lignin than bast. Core was found to have higher potential for fast pyrolysis than the bast but its potential was variety-dependent. Overall, kenaf could be grown to diversify Iowa agriculture and provide alternative feedstock to the biofuel industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Boundy B, Davis S, Wright L, Badger P, Perlack B (2010) Biomass Energy Data Book 2010

  2. Cherubini F, Strømman AH (2011) Life cycle assessment of bioenergy systems: state of the art and future challenges. Bioresour Technol 102(2):437–451

    Article  CAS  PubMed  Google Scholar 

  3. Brown RC, Brown TR (2014) Biorenewable resources: engineering new products from agriculture. John Wiley & Sons, New York, NY

    Book  Google Scholar 

  4. Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuel 20(3):848–889

    Article  CAS  Google Scholar 

  5. Jenkins B, Baxter L, Miles T (1998) Combustion properties of biomass. Fuel Process Technol 54(1):17–46

    Article  CAS  Google Scholar 

  6. Misra MK, Ragland KW, Baker AJ (1993) Wood ash composition as a function of furnace temperature. Biomass Bioenergy 4(2):103–116

    Article  CAS  Google Scholar 

  7. Monti A, Alexopoulou E (2013) Kenaf: a multi-purpose crop for several industrial applications: new insights from the biokenaf project. Springer-Verlag, London

    Book  Google Scholar 

  8. Sellers T, Reichert NA (1999) Kenaf properties, processing, and products. Mississippi State University

  9. Bel-Berger P, Von Hoven T, Ramaswamy G, Kimmel L, Boylston E (1999) Cotton/kenaf fabrics: a viable natural fabric. Journal of cotton science

  10. Zaveri MD (2004) Absorbency characteristics of kenaf core particles

  11. K.E.F.I. (2011) KEFI SpA. Kenaf-fiber,

  12. Bowyer J, Shmulsky R, Haygreen J (2007) Forest products and wood science: an introduction. 5th. John Wiley,

  13. Brown TR, Brown RC (2013) Techno-economics of advanced biofuels pathways. RSC Adv 3(17):5758–5764

    Article  CAS  Google Scholar 

  14. Meryemoğlu B, Hasanoğlu A, Irmak S, Erbatur O (2014) Biofuel production by liquefaction of kenaf (Hibiscus cannabinus L.) biomass. Bioresour Technol 151:278–283

    Article  PubMed  Google Scholar 

  15. Zhou Z, Yin X, Wu C, Ma L Research on the gasification characteristics of the industrial residues of kenaf. Proceedings of ISES World Congress 2007 (Vol. I–Vol. V), ate 2009. Springer, pp 2397–2399

  16. Clark T, Cunningham R, Wolff I (1971) A search for new fiber crops. Tappi 54(1):63–65

    CAS  Google Scholar 

  17. Wood I, Muchow R, Ratcliff D (1983) Effect of sowing date on the growth and yield of kenaf (Hibiscus cannabinus) grown under irrigation in tropical Australia II. Stem production. Field Crop Res 7:91–102

    Article  Google Scholar 

  18. ISU Ag Climate (2014)

  19. Alexopoulou E, Christou M, Mardikis M, Chatziathanassiou A (2000) Growth and yields of kenaf varieties in Central Greece. Ind Crop Prod 11(2):163–172

    Article  Google Scholar 

  20. Archontoulis S, Vos J, Yin X, Bastiaans L, Danalatos N, Struik P (2011) Temporal dynamics of light and nitrogen vertical distributions in canopies of sunflower, kenaf and cynara. Field Crop Res 122(3):186–198

    Article  Google Scholar 

  21. Webber CL (1993) Yield components of five kenaf cultivars. Agron J 85(3):533–535

    Article  Google Scholar 

  22. Baldwin B, Hollowell J, Mosley J, Cossar R (2006) Registration of ‘Whitten’ kenaf. Crop Sci 46:988–989

    Article  Google Scholar 

  23. Vogel KP, Pedersen JF, Masterson SD, Toy JJ (1999) Evaluation of a filter bag system for NDF, ADF, and IVDMD forage analysis. Crop Sci 39(1):276–279

    Article  Google Scholar 

  24. Olesik JW (1991) Elemental analysis using ICP-OES and ICP/MS. Anal Chem 63(1):12A–21A

    Article  CAS  Google Scholar 

  25. Alexopoulou E, Li D, Papatheohari Y, Siqi H, Scordia D, Testa G (2015) How kenaf (Hibiscus cannabinus L.) can achieve high yields in Europe and China. Ind Crop Prod 68:131–140

    Article  Google Scholar 

  26. Liu Y, Labuschagne M (2009) The influence of environment and season on stalk yield in kenaf. Ind Crop Prod 29(2):377–380

    Article  Google Scholar 

  27. Berti MT, Kamireddy SR, Ji Y (2013) Row spacing affects biomass yield and composition of kenaf (Hibiscus cannabinus L.) as a lignocellulosic feedstock for bioenergy. J Sustain Bioenergy Syst 3(2013):68–73

    Article  Google Scholar 

  28. Webber III CL (1999) Effect of kenaf and soybean rotations on yield components. Perspectives on new crops and new uses ASHS Press, Alexandria, VA:316–322

  29. Webber III CL, Bhardwaj HL, Bledsoe VK (2002) Kenaf production: fiber, feed, and seed. Trends in new crops and new uses ASHS Press, Alexandria, VA:327–339

  30. Zegada-Lizarazu W, Monti A (2011) Energy crops in rotation. Rev Biomass Bioenergy 35(1):12–25

    Article  Google Scholar 

  31. Akil H, Omar M, Mazuki A, Safiee S, Ishak Z, Bakar AA (2011) Kenaf fiber reinforced composites: a review. Mater Des 32(8):4107–4121

    Article  CAS  Google Scholar 

  32. Kuzhiyil N, Dalluge D, Bai X, Kim KH, Brown RC (2012) Pyrolytic sugars from cellulosic biomass. ChemSusChem 5(11):2228–2236

    Article  CAS  PubMed  Google Scholar 

  33. Hu Z, Sykes R, Davis MF, Brummer EC, Ragauskas AJ (2010) Chemical profiles of switchgrass. Bioresour Technol 101(9):3253–3257

    Article  CAS  PubMed  Google Scholar 

  34. Zhu Y, Lee Y, Elander RT (2007) Conversion of aqueous ammonia-treated corn stover to lactic acid by simultaneous saccharification and cofermentation. Appl Biochem Biotechnol 137(1–12):721–738

    PubMed  Google Scholar 

  35. Moore K, Hatfield R (1994) Carbohydrates and forage quality. Forage quality, evaluation, and utilization (foragequalityev):229–280

  36. Goff BM, Murphy PT, Moore KJ (2012) Comparison of common lignin methods and modifications on forage and lignocellulosic biomass materials. J Sci Food Agric 92(4):751–758

    Article  CAS  PubMed  Google Scholar 

  37. Cassida K, Muir J, Hussey M, Read J, Venuto B, Ocumpaugh W (2005) Biofuel component concentrations and yields of switchgrass in south central US environments. Crop Sci 45(2):682–692

    Article  CAS  Google Scholar 

  38. Baxter LL, Miles TR, Jenkins BM, Milne T, Dayton D, Bryers RW, Oden LL (1998) The behavior of inorganic material in biomass-fired power boilers: field and laboratory experiences. Fuel Process Technol 54(1):47–78

    Article  CAS  Google Scholar 

  39. Monti A, Di Virgilio N, Venturi G (2008) Mineral composition and ash content of six major energy crops. Biomass Bioenergy 32(3):216–223

    Article  CAS  Google Scholar 

  40. Kim J-Y, Hwang H, Oh S, Kim Y-S, Kim U-J, Choi JW (2014) Investigation of structural modification and thermal characteristics of lignin after heat treatment. Int J Biol Macromol 66:57–65

    Article  CAS  PubMed  Google Scholar 

  41. Werpy T, Petersen G, Aden A, Bozell J, Holladay J, White J, Manheim A, Eliot D, Lasure L, Jones S (2004) Top value added chemicals from biomass. Volume 1—results of screening for potential candidates from sugars and synthesis gas. DTIC Document,

  42. Longley CJ, Fung DP (1993) Potential applications and markets for biomass-derived levoglucosan. Advances in Thermochemical Biomass Conversion. Springer, pp 1484–1494

  43. Bridgwater A, Meier D, Radlein D (1999) An overview of fast pyrolysis of biomass. Org Geochem 30(12):1479–1493

    Article  CAS  Google Scholar 

  44. Essig M, Lowary T, Richards G, Schenck E (1988) Influences of “neutral” salts on thermochemical conversion of cellulose and of sucrose. Research in Thermochemical Biomass Conversion. Springer, pp 143–154

  45. Li L, Zhang H (2004) Preparing levoglucosan derived from waste material by pyrolysis. Energy Sources 26(11):1053–1059

    Article  CAS  Google Scholar 

  46. Kuzhiyil N, Brown R (2014) Temperature dependence of levoglucosan yield from fast pyrolysis of acid infused biomass. Biofuels 5(2):123–127

    Article  CAS  Google Scholar 

  47. Zhang S, Yan Y, Li T, Ren Z (2005) Upgrading of liquid fuel from the pyrolysis of biomass. Bioresour Technol 96(5):545–550

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the people who helped with the field and lab analyses: Trish Patrick, Danielle Wilson, Jérémie Bouriot, Patrick Johnston, and Rajeeva Chamila Thilakaratne.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Bourguignon.

Electronic supplementary material

ESM 1

(DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bourguignon, M., Moore, K.J., Brown, R.C. et al. Variety Trial and Pyrolysis Potential of Kenaf Grown in Midwest United States. Bioenerg. Res. 10, 36–49 (2017). https://doi.org/10.1007/s12155-016-9773-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-016-9773-8

Keywords

Navigation