Skip to main content

Advertisement

Log in

Environmental Effects of Steam Explosion Pretreatment on Biogas from Maize—Case Study of a 500-kW Austrian Biogas Facility

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Potential environmental impacts of biogas electricity from agricultural residues (maize stover) with steam explosion (SE) pretreatment were compared to a typical Austrian biogas system (maize silage) using the method of life cycle assessment. Besides the biogas plant, the system includes substrate production, a combined heat-and-power (CHP) unit, digestate management, and transportation. The stover scenario (including construction and operation of the SE unit) results in lower total climate change impacts than those of the typical biogas system (239 g CO2-eq/kWh electricity vs. 287 g CO2-eq/kWh electricity; 100-year global warming potential (GWP)), and this holds also for the other impact categories (e.g., cumulative energy demand, acidification, eutrophication). While uncertainties in other areas could change the results, based on the uncertainty information considered, the overall results for the two scenarios were significantly different. Methane slip emissions from the CHP exhaust account for the largest GWP share in both scenarios. Other large GWP contributions are from substrate production and grid electricity for plant operations. The findings were robust against worst-case assumptions about the energy requirements of the SE pretreatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Österreichischer Biomasseverband (2013) Basisdaten 2013 Bioenergie Österreich. Vienna

  2. Wolf M-A, Pant R, Chomkhamsri K, Sala S, Pennington D (2012) Characterisation factors of the ILCD recommended life cycle impact assessment methods. Database and supporting information. First edition. Luxembourg. doi:10.2788/85727

  3. Walla C (2006) Wirtschaftlichkeit von Biogasanlagen. Dissertation, University of Natural Resources and Life Sciences Vienna

  4. Tragner F, Lins S, Hornbacher D, Kryvoruchko V, Konrad G, Bomatter A (2008) Biogas Branchenmonitor Endbericht 2008. Erhebung von Wirtschaftsdaten und Trends zu Biogas in Österreich, im Auftrag des BMVIT. Vienna

  5. Bauer A, Frühauf S, Gronauer A (2014) Landwirtschaftliches Reststoff-Potenzial für Biogas – technische Umsetzungs- und Handlungserfordernisse. Paper presented at the 4th Central European Biomass Conference 2014, Graz

  6. Hendriks ATWM, Zeeman G (2008) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100(1):10–18. doi:10.1016/j.biortech.2008.05.027

    Article  PubMed  Google Scholar 

  7. Clark TA, Mackie KL (1987) Steam explosion of the softwood Pinus radiata with sulphur dioxide addition. I. Process optimization. J Wood Chem Technol 7(3):373–403. doi:10.1080/02773818708085275

    Article  CAS  Google Scholar 

  8. Horn SJ, Nguyen QD, Westereng B, Nilsen PJ, Eijsink VGH (2011) Screening of steam explosion conditions for glucose production from non-impregnated wheat straw. Biomass Bioenergy 35(12):4879–4886. doi:10.1016/j.biombioe.2011.10.013

    Article  CAS  Google Scholar 

  9. Menardo S, Bauer A, Theuretzbacher F, Piringer G, Nilsen PJ, Balsari P, Pavliska O, Amon T (2012) Biogas production from steam-exploded miscanthus and utilization of biogas energy and CO 2 in greenhouses. Bioenergy Res 1–11. doi:10.1007/s12155-012-9280-5

  10. Sargalski W, Solheim OE, Fjordside C (2007) Treating organic waste with CAMBI THP. Paper presented at the 12th European Biosolids and Organic Resources Conference, Manchester

  11. Schumacher B, Oechsner H, Senn T, Jungbluth T (2010) Life cycle assessment of the conversion of Zea mays and x triticosecale into biogas and bioethanol. Eng Life Sci 10(6):577–584. doi:10.1002/elsc.201000069

    Article  CAS  Google Scholar 

  12. Nemecek T, Kägi T (2007) Life cycle inventories of agricultural production systems. ecoinvent report, vol 15. Agrosope Reckenholz-Tänikon Research Station ART, Zürich and Dübendorf

  13. Laaber M (2011) Gütesiegel Biogas. Evaluierung der technischen, ökologischen und sozioökonomischen Rahmenbedingungen für eine Ökostromproduktion aus Biogas. Dissertation, University of Natural Resources and Life Sciences Vienna

  14. Bachmaier J (2012) Treibhausgasemissionen und fossiler Energieverbrauch landwirtschaftlicher Biogasanlagen. Eine Bewertung auf Basis von Messdaten mit Evaluierung der Ergebnisunsicherheit mittels Monte-Carlo-Simulation. Dissertation, University of Natural Resources and Life Sciences Vienna

  15. Ecoinvent data v 2.2. (2010) Swiss centre for life cycle inventories. www.ecoinvent.org. Accessed 04 March 2014

  16. Fachagentur nachwachsende Rohstoffe (2009) Biogas-Messprogramm 2: 61 Biogasanlagen im Vergleich. Fachagentur Nachwachsende Rohstoffe, Gülzow

  17. Fachagentur nachwachsende Rohstoffe (2010) Leitfaden Biogas - Von der Gewinnung zur Nutzung, Germany

  18. Siegl S (2010) Öko-Strom aus Biomasse. Dissertation, University of Natural Resources and Life Sciences Vienna

  19. Amon B, Kryvoruchko V, Amon T, Zechmeister-Boltenstern S (2006) Methane, nitrous oxide and ammonia emissions during storage and after application of dairy cattle slurry and influence of slurry treatment. Agric Ecosyst Environ 112(2–3):153–162. doi:10.1016/j.agee.2005.08.030

    Article  CAS  Google Scholar 

  20. Wulf S, Maeting M, Clemens J (2002) Application technique and slurry co-fermentation effects on ammonia, nitrous oxide, and methane emissions after spreading. J Environ Qual 31(6):1795–1801. doi:10.2134/jeq2002.1795

    Article  CAS  PubMed  Google Scholar 

  21. Agrinz Technologies GmbH (2012) Corn straw. Austria

  22. Chamber of Agriculture (2012) Marktbericht der Niederösterreichischen Landes-Landwirtschaftskammer. Markt Niederösterreich 41:2, Austria

  23. Schindler M (2014) Getreidestroh verkaufen oder einarbeiten? Landwirtschaftskammer Niedersachsen, Germany. http://www.lwk-niedersachsen.de/index.cfm/portal/6/nav/360/article/21106.html Accsessed 20 April 2015

  24. Statistik Austria (2014) Feldfruchtproduktion ab 1970. Vienna. http://www.statistik.at/web_de/statistiken/land_und_forstwirtschaft/agrarstruktur_flaechen_ertraege/feldfruechte/ Accessed 05 May 2014

  25. Bavarian State Research Center for Agriculture (2012) Biogas in Bayern - Zahlen zum 31.12.2011, Germany

  26. Gronauer A (2007) Biogashandbuch Bayern - Materialienband: Auszug 1.1 - 1.6. Bayerisches Landesamt für Umweltschutz, Augsburg

    Google Scholar 

  27. Bundesministerium für Land- und Forstwirtschaft Umwelt und Wasserwirtschaft (2008) Deckungsbeiträge und daten für die betriebsplanung. Bundesministerium für Land- und Forstwirtschaft, Austria, Umwelt und Wasserwirtschaft, Referat II 2b - Beratung, Wien

  28. Hopfner-Sixt K (2005) Analyse von Leistungsfähigkeit, Wirtschaftlichkeit und Entwicklungsperspektiven landwirtschaftlicher Biogasanlagen. Dissertation, University of Natural Resources and Life Sciences Vienna

  29. Döhler H, Eckel H, Fröba N, Grebe S, Hartmann S, Häußermann U, Klages S, Sauer N, Nakazi S (2009) Faustzahlen biogas. Kuratorium für Technik und Bauwesen in der Landwirtschaft e.V. (KTBL), Darmstadt

    Google Scholar 

  30. Pavliska O, Theuretzbacher F, Bauer A, Amon B, Amon T, Kaul H-P (2012) Efficient utilization of lignocellulosic crop residues for biogas production using an optimized process chain. Paper presented at the 20th European Biomass Conference and Exhibition, Milan

  31. Panther K, Solheim OE, Fjordside C (2004) Hydrolysis and digestion of biodegradable municipal waste at Lillehammer, Norway. 2 years full scale experience, Norway

  32. Achilles W (2005) Faustzahlen für die Landwirtschaft. Kuratorium für Technik und Bauwesen in der Landwirtschaft. KTBL-Schriftenvertrieb im Landwirtschaftsverlag, Münster

    Google Scholar 

  33. Goedkoop M, Heijungs R, Huijbregts M, De Schryver A, Struijs J, Zelm Rv (2013) ReCiPe 2008, a life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. First edition Report I: Characterisation, Netherlands

  34. Frischknecht R, Jungbluth N, Althaus H-J, Bauer C, Doka G, Dones R, Hirschier R, Hellweg S, Humbert S, Köllner T, Loerinci Y, Margni M, Nemecek T (2007) Implementation of life cycle impact assessment methods. Ecoinvent report No. 3, v2.0. Swiss Centre for Life Cycle Inventories, Dübendorf

    Google Scholar 

  35. Intergovernmental Panel on Climate Change (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  36. Intergovernmental Panel on Climate Change (2007) Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  37. Rosenbaum RK, Bachmann TM, Gold LS, Huijbregts MAJ, Jolliet O, Juraske R, Koehler A, Larsen HF, MacLeod M, Margni MD, McKone TE, Payet J, Schuhmacher M, van de Meent D, Hauschild MZ (2008) USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess 13:532–546. doi:10.1007/s11367-008-0038-4

    Article  CAS  Google Scholar 

  38. IBM Corp. (2012) IBM SPSS Statistics for Windows, Version 21.0. New York

  39. Prasuhn V (2006) Erfassung der PO4-Austräge für die Ökobilanzierung. Agroscope FAL Reckenholz, Switzerland

    Google Scholar 

Download references

Acknowledgments

This study was carried out as part of the COMET (Competence Centers for Excellent Technologies) program at the alpS-Centre for Climate Change Adaptation. The program is an initiative of the Federal Ministry of Transport, Innovation and Technology and the Federal Ministry of Science, Research and Economy. Additional support for the program comes from the federal states of Tyrol and Vorarlberg. The program is administered by the Austrian Research Promotion Agency (FFG). The authors thank two anonymous reviewers for valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Piringer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kral, I., Piringer, G., Saylor, M.K. et al. Environmental Effects of Steam Explosion Pretreatment on Biogas from Maize—Case Study of a 500-kW Austrian Biogas Facility. Bioenerg. Res. 9, 198–207 (2016). https://doi.org/10.1007/s12155-015-9676-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-015-9676-0

Keywords

Navigation