Skip to main content

Advertisement

Log in

Design and evaluation of new chemotherapeutics of aloe-emodin (AE) against the deadly cancer disease: an in silico study

  • Original Article
  • Published:
Journal of Chemical Biology

Abstract

The Bcl-2 family proteins include pro- and antiapoptotic factors acting as critical arbiters of apoptotic cell death decisions in most circumstances. Evasion of apoptosis is one of the hallmarks of cancer, relevant to tumorigenesis as well as resistance to cytotoxic drugs, and deregulation of Bcl-2 proteins was observed in many cancers. Since Bax-mediated induction of apoptosis is a crucial mechanism in cancerous cells, we aimed at conducting in silico analysis on Bax in order to predict the possible interactions for anticancer agents. The present report depicts the binding mode of aloe-emodin and its structurally modified derivatives onto Bax. The structural information about the binding site of Bax for docked compounds obtained from this study could aid in screening and designing new anticancer agents or selective inhibitors for chemotherapy against Bax.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adams JM, Cory S (2001) Life-or-death decisions by the Bcl-2 protein family. Trends Biochem Sci 26:61–66

    Article  CAS  Google Scholar 

  2. Andersen DO, Weber ND, Wood SG, Hughes BG, Murray BK, North JA (1991) In vitro virucidal activity of selected anthraquinones and anthraquinone derivatives. Antivir Res 16:185–196

    Article  CAS  Google Scholar 

  3. Arosio B, Gagliano N, Fusaro LM, Parmeggiani L, Tagliabue J, Galetti P, De Castri D, Moscheni C, Annoni G (2000) Aloe-emodin quinone pretreatment reduces acute liver injury induced by carbon tetrachloride@@. Pharmacol Toxicol 87:229–233

    Article  CAS  Google Scholar 

  4. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci U S A 9:10037–10041

    Article  Google Scholar 

  5. Berendsen HJC, Postma JPM, van Gunsteren WF, Dinola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  6. Berman HM, Battistuz T, Bhat TN, Bluhm WF, Bourne PE, Burkhardt K, Feng Z, Gilliland GL, Iype L, Jain S, Fagan P, Marvin J, Padilla D, Ravichandran V, Schneider B, Thanki N, Weissig H, Westbrook JD, Zardecki C (2002) The Protein Data Bank. Acta Crystallogr D: Biol Crystallogr 58:899–907

    Article  Google Scholar 

  7. Bren M, Florian J, Mavri J, Bren U (2007) Do all pieces make a whole? Thiele cumulants and the free energy decomposition. Theor Chem Acc 117:535–540

    Article  CAS  Google Scholar 

  8. Bren U, Martinek V, Florian J (2006) Decomposition of the solvation free energies of deoxyribonucleoside triphosphates using the free energy perturbation method. J Phys Chem B 110:12782–12788

    Article  CAS  Google Scholar 

  9. Budihardjo I, Oliver H, Lutter M, Luo X, Wang X (1999) Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol 15:269–290

    Article  CAS  Google Scholar 

  10. Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, Frisch S, Reed JC (1998) Regulation of cell death protease caspase-9 by phosphorylation. Science 282:1318–1321

    Article  CAS  Google Scholar 

  11. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  12. DeLano WL (2010) The PyMOL Molecular Graphics System, Internet, http://www.pymol.org. Accessed 2 Dec 2010

  13. Engelmann I, Bauer G (2000) How can tumor cells escape intercellular induction of apoptosis? Anticancer Res 20:2297–2306

    CAS  Google Scholar 

  14. Farnsworth NR, Akerele O, Bingel AS, Soejarto DD, Guo Z (1985) Medicinal plants in therapy. Bull World Health Organ 63:965–981

    CAS  Google Scholar 

  15. Gasteiger J, Marsili M (1980) Iterative partial equalization of orbital electro negativity—a rapid access to atomic charges. Tetrahedron 36:3219–3228

    Article  CAS  Google Scholar 

  16. Hartwell JL (1982) Plants used against cancer: a survey. Quarterman, Lawrence, pp 438–439

    Google Scholar 

  17. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: A linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  18. Hess B, Kutzer C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced and scalable molecular simulation. J Chem Theory Comput 4:435–447

    Article  CAS  Google Scholar 

  19. Hockney RW, Goel SP, Eastwood J (1974) Quit high resolution computer models of plasma. J Comput Phys 14:148–158

    Article  Google Scholar 

  20. HyperChem, release 7.5 for Windows, Molecular Modeling System; Hypercube, Inc and Autodesk, Inc [http://www.hyper.com/]. Accessed 8 Sep 2003

  21. Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TC (2000) III. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33:889–897

    Article  CAS  Google Scholar 

  22. Krumbiegel G, Schulz HU (1993) Rhein and aloe-emodin kinetics from senna laxatives in man. Pharmacology 47:120–124

    Article  CAS  Google Scholar 

  23. Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8:477–486

    Article  CAS  Google Scholar 

  24. Lee HZ (2001) Protein kinase C involvement in aloe-emodin- and emodin-induced apoptosis in lung carcinoma cell. Br J Pharmacol 134:1093–1103

    Article  CAS  Google Scholar 

  25. Lee HZ, Hsu SL, Liu MC, Wu CH (2001) Effects and mechanisms of aloe-emodin on cell death in human lung squamous cell carcinoma. Eur J Pharmacol 431:287–295

    Article  CAS  Google Scholar 

  26. Lin ML, LuYC SHL, Lin HT, Lee CC, Kang SE, Lai TC, Chung JG, Chen SS (2011) Destabilization of CARP mRNAs by aloe-emodin contributes to caspase-8-mediated p53-independent apoptosis of human carcinoma cells. J Cell Biochem 112:1176–1191

    Article  CAS  Google Scholar 

  27. Lin JG, Chen GW, Li TM, Chouh ST, Tan TW, Chung JG (2006) Aloe-emodin induces apoptosis in T24 human bladder cancer cells through the p53 dependent apoptotic pathway. J Urol 175:343–347

    Article  CAS  Google Scholar 

  28. Lin SY, Yang JH, Hsia TC, Lee JH, Chiu TH, Wei YH, Chung JG (2005) Effect of inhibition of aloe-emodin on N-acetyltransferase activity and gene expression in human malignant melanoma cells. Melanoma Res 15:489–494

    Article  CAS  Google Scholar 

  29. Lin SY, Lai WW, Ho CC, Yu FS, Chen GW, Yang JS, Liu KC, Lin ML, Wu PP, Fan MJ, Chung JG (2009) Emodin induces apoptosis of human tongue squamous cancer SCC-4 cells through reactive oxygen species and mitochondria-dependent pathways. Anticancer Res 29:327–335

    CAS  Google Scholar 

  30. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25

    Article  CAS  Google Scholar 

  31. Lipinski CA, Lombardo F, Dominy W, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Del Rev 46:3–26

    Article  CAS  Google Scholar 

  32. Mahajan NP, Linder K, Berry G, Gordon GW, Heim R, Herman B (1998) Bcl-2 and Bax interactions in mitochondria probed with green fluorescent protein and fluorescence resonance energy transfer. Nat Biotechnol 16:547–552

    Article  CAS  Google Scholar 

  33. Masaldan S, Iyer VV (2012) Exploration of effects of emodin in selected cancer cell lines: enhanced growth inhibition by ascorbic acid and regulation of LRP1 and AR under hypoxia-like conditions. J Appl Toxicol. doi:10.1002/jat.2823

    Google Scholar 

  34. Mijatovic S, Maksimovic-Ivanic D, Radovic J, Dj M, Lj H, Vuckvic O, Stosic-Grujicic S, Mostarica Stojkovic M, Trajkovic V (2005) Anti-glioma action of aloe emodin: the role of ERK inhibition. Cell Mol Life Sci 62:589–598

    Article  CAS  Google Scholar 

  35. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (2007) AutoDock, Version 4.0.1. The Scripps Research Institute, La Jolla

    Google Scholar 

  36. Muchmore SW, Sattler M, Liang H, Meadows RP, Harlan JE, Yoon HS, Nettesheim D, Chang BS, Thompson CB, Wong SL, Shi-chung NG, Fesik SW (1996) X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 381:335–341

    Article  CAS  Google Scholar 

  37. Muto A, Hori M, Sasaki Y, Saitoh A, Yasuda I, Maekawa T, Uchida T, Asakura K, Nakazato T, Kaneda T, Kizaki M, Ikeda Y, Yoshida T (2007) Emodin has a cytotoxic activity against human multiple myeloma as a Janus-activated kinase 2 inhibitor. Mol Cancer Ther 6:987–994

    Article  CAS  Google Scholar 

  38. Nuessler V, Stotzer O, Gullis E, Pelka-fleischer R, Pogrebnaik A, Gieseler F, Wilmanns W (1999) Bcl-2, Bax and Bcl-xL expression in human sensitive and resistant leukemia cell lines. Leukemia 13:1864–1872

    Article  CAS  Google Scholar 

  39. O’Connor L, Huang DC, O’Reilly LA, Strasser A (2000) Apoptosis and cell division. Curr Opin Cell Biol 12:257–263

    Article  Google Scholar 

  40. Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics 2002. CA Cancer J Clin 55:74–108

    Article  Google Scholar 

  41. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190

    Article  CAS  Google Scholar 

  42. Pecere T, Gazzola MV, Mucignat C, Parolin C, Vecchia FD, Cavaggioni A, Basso G, Diaspro A, Salvato B, Carli M, Palu G (2000) Aloe-emodin is a new type of anticancer agent with selective activity against neuroectodermal tumors. Cancer Res 60:2800–2804

    CAS  Google Scholar 

  43. Pecere T, Sarinella F, Salata C, Gatto B, Bet A, Dalla Vecchia F, Diaspro A, Carli M, Palumbo M, Palu G (2003) Involvement of p53 in specific anti-neuroectodermal tumor activity of aloe-emodin. Int J Cancer 106:836–847

    Article  CAS  Google Scholar 

  44. Sanner MF, Huey R, Dallakyan S, Karnati S, Lindstrom W, Morris GM, Norledge B, Omelchenko A, Stoffler D, Vareille G (2007) AutoDockTools, version 1.4.5. The Scripps Research Institute, La Jolla

    Google Scholar 

  45. Sawada N, Nakashima S, Banna Y, Yamakawa H, Hayashi K, Takenaka K, Nishimura Y, Sakai N, Nozawa Y (2000) Ordering of ceramide formation, caspase activation, and Bax/Bcl-2 expression during etoposide-induced apoptosis in C6 glioma cells. Cell Death Differ 7:761–772

    Article  CAS  Google Scholar 

  46. Shanno DF (1970) Conditioning of quasi-Newton methods for function minimization. Math Comput 24:647–656

    Article  Google Scholar 

  47. Sharp KA, Honig B (1990) Electrostatic interactions in macromolecules: theory and applications. Annu Rev Biophys Biophys Chem 19:301–332

    Article  CAS  Google Scholar 

  48. Shrake A, Rupley JA (1973) Environment and exposure to solvent of protein atoms. Lysozyme and insulin. J Mol Biol 79:351–371

    Article  CAS  Google Scholar 

  49. Sitkoff D, Sharp KA, Honig B (1994) Accurate calculation of hydration free energies using macroscopic solvent models. J Phys Chem 97:1978–1988

    Article  Google Scholar 

  50. Srinvas G, Babykutty S, Sathiadevan PP, Srinivas P (2007) Molecular mechanism of emodin action: transition from laxative ingredient to an antitumor agent. Med Res Rev 27:591–608

    Article  Google Scholar 

  51. Surh YJ (2003) Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer 3:768–780

    Article  CAS  Google Scholar 

  52. Suzuki M, Youle RJ, Tjandra N (2000) Structure of Bax: coregulation of dimer formation and intracellular localization. Cell 103:645–654

    Article  CAS  Google Scholar 

  53. Tan Y, Demeter MR, Ruan H, Comb MJ (2000) BAD Ser-15 phosphorylation regulates BAD Bcl-XL interaction and cell survival. J Biol Chem 275:25865–25869

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors wishes to thank the Department of Biotechnology-Bioinformatics Facility, Government of India for providing facilities for the work (F.No. BT/BI/25/2001/2006). The authors gratefully acknowledge their gratitude to the University Grant Commission (UGC), New Delhi for the financial support. Chaitanya wishes to thank the CSIR, New Delhi for the Senior Research Fellowship. The coauthor B. Babajan (no. F.4-2/2006 (BSR)/13-843/2013 (BSR)) thank UGC Dr. D.S. Kothari Post Doctoral Program for providing financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Kumar Chitta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mulakayala, C., Banaganapalli, B., Mulakayala, N. et al. Design and evaluation of new chemotherapeutics of aloe-emodin (AE) against the deadly cancer disease: an in silico study. J Chem Biol 6, 141–153 (2013). https://doi.org/10.1007/s12154-013-0097-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12154-013-0097-2

Keywords

Navigation