Skip to main content

Advertisement

Log in

Melissa Officinalis L. aqueous extract pretreatment decreases methotrexate-induced hepatotoxicity at lower dose and increases 99mTc-phytate liver uptake, as a probe of liver toxicity assessment, in rats

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

Hepatotoxicity remains amongst the restricting factors of Methotrexate (MTX)-associated cancer therapy, especially in high doses of chemo-drugs or prolonged treatment. Due to the known protective effects of Melissa officinalis (M. officinalis), the aqueous extract of this plant was evaluated to ameliorate MTX-associated hepatotoxicity in rats.

Methods

Adult female Wistar rats were received or not M. officinalis aqueous extract at doses of 100 mg/kg (for 14 and 24 consecutive days) and 2 g/kg (for 14 consecutive days) by gavage technique. MTX (20 mg/kg) was intraperitoneally injected on the 10th- and 20th-day post-M. officinalis treatment. 24 h after the last day of treatment, 99mTc-phytate was intravenously injected through the tail of rats. Animals were killed at 20 min after radiocolloid injection, and vital tissues including the liver and spleen were isolated, weighed, and their radioactivity was counted. As well, 99mTc-phytate scintigraphy and histopathology of the liver were performed for higher accuracy.

Result

A significant increase in liver radioactivity was detected in M. officinalis+MTX receiving groups compared with the MTX rats which were more robust at a dose of 100 mg/kg for 14 days. Also, a significant reduction in liver radioactivity was evident with M. officinalis extract at a dose of 2 g/kg for 14 days in comparison with the control group, this reduction was not significant at the lower dose of 100 mg/kg. Gamma scintigraphy and histopathological examinations confirmed the hepatoprotective effect of M. officinalis vs MTX-induced liver injury in rats.

Conclusion

In conclusion, we highlighted the liver uptake of 99mTc-phytate as a valuable method for assessment of liver toxicity and addressed that M. officinalis pretreatment (100 mg/kg for 14 days) ameliorates the MTX-associated hepatotoxicity in rats; however, M. officinalis itself induces liver toxicity at higher doses.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability statement

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Khan ZA, Tripathi R, Mishra B. Methotrexate: a detailed review on drug delivery and clinical aspects. Expert Opin Drug Deliv. 2012;9(2):151–69.

    Article  CAS  PubMed  Google Scholar 

  2. Cronstein B. How does methotrexate suppress inflammation. Clin Exp Rheumatol. 2010;28(5 Suppl 61):S21–3.

    CAS  PubMed  Google Scholar 

  3. Chan ES, Cronstein BN. Mechanisms of action of methotrexate. Bull NYU Hosp Jt Dis. 2013;71(suppl 1):S5.

    Google Scholar 

  4. Vaidya B, Bhochhibhoya M, Nakarmi Sh. Efficacy of vitamin E in methotrexate-induced hepatotoxicity in rheumatoid arthritis: an open-label case-control study. Int J Rheumatol. 2020;2020(5723485):1–6.

    Google Scholar 

  5. Gaies E, et al. Methotrexate side effects: review article. J Drug Metab Toxicol. 2012;3(4):1–5.

    Article  Google Scholar 

  6. Bath RK, et al. A review of methotrexate-associated hepatotoxicity. J Dig Dis. 2014;15(10):517–24.

    Article  CAS  PubMed  Google Scholar 

  7. Jahovic N, et al. Melatonin prevents methotrexate-induced hepatorenal oxidative injury in rats. J Pineal Res. 2003;34(4):282–7.

    Article  CAS  PubMed  Google Scholar 

  8. Pandit A, Sachdeva T, Bafna P. Drug-induced hepatotoxicity: a review. J Appl Pharm Sci. 2012;2(5):233–43.

    Google Scholar 

  9. Dalaklioglu S, et al. Resveratrol ameliorates methotrexate-induced hepatotoxicity in rats via inhibition of lipid peroxidation. Hum Exp Toxicol. 2013;32(6):662–71.

    Article  CAS  PubMed  Google Scholar 

  10. Kumari S, et al. Methotrexate induced hepatotoxicity and its management. Inter J Sci Res. 2016;5:1477–81.

    Google Scholar 

  11. Desouza C, et al. Drugs affecting homocysteine metabolism. Drugs. 2002;62(4):605–16.

    Article  CAS  PubMed  Google Scholar 

  12. Gulec M, Gurel A, Armutcu F. Vitamin E protects against oxidative damage caused by formaldehyde in the liver and plasma of rats. Mol Cell Biochem. 2006;290(1–2):61–7.

    Article  CAS  PubMed  Google Scholar 

  13. Vardi N, et al. Protective effect of β-carotene on methotrexate–induced oxidative liver damage. Toxicol Pathol. 2010;38(4):592–7.

    Article  CAS  PubMed  Google Scholar 

  14. Armagan I, et al. Effects of pentoxifylline and alpha lipoic acid on methotrexate-induced damage in liver and kidney of rats. Environ Toxicol Pharmacol. 2015;39(3):1122–31.

    Article  CAS  PubMed  Google Scholar 

  15. Meyer W, Spiteller G. Increase of caryophyllene oxide in ageing lemon balm leaves (Melissa officinalis L.)-a consequence of lipid peroxidation? Zeitschrift für Naturforschung C. 1996;51(9–10):651–6.

    Article  CAS  Google Scholar 

  16. Bolkent S, et al. Protective role of Melissa officinalis L. extract on liver of hyperlipidemic rats: a morphological and biochemical study. J Ethnopharmacol. 2005;99(3):391–8.

    Article  CAS  PubMed  Google Scholar 

  17. Zarei A, et al. Comparison between effects of different doses of Melissa officinalis and atorvastatin on the activity of liver enzymes in hypercholesterolemia rats. Avicenna J Phytomed. 2014;4(1):15.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Shakeri A, Sahebkar A, Javadi B. Melissa officinalis L.-a review of its traditional uses, phytochemistry and pharmacology. J Ethnopharmacol. 2016;188:204–28.

    Article  CAS  PubMed  Google Scholar 

  19. Adinee J, Piri K, Karami O. Essential oil component in flower of lemon balm (Melissa officinalis L.). Am J Biochem Biotechnol. 2008;4(3):277–8.

    Article  CAS  Google Scholar 

  20. Dastmalchi K, et al. Chemical composition and in vitro antioxidative activity of a lemon balm (Melissa officinalis L.) extract. LWT Food Sci Technol. 2008;41(3):391–400.

    Article  CAS  Google Scholar 

  21. Pereira RP, et al. Antioxidant effects of different extracts from Melissa officinalis, Matricaria recutita and Cymbopogon citratus. Neurochem Res. 2009;34(5):973–83.

    Article  CAS  PubMed  Google Scholar 

  22. Spiridon I, et al. Antioxidant capacity and total phenolic contents of oregano (Origanum vulgare), lavender (Lavandula angustifolia) and lemon balm (Melissa officinalis) from Romania. Nat Prod Res. 2011;25(17):1657–61.

    Article  CAS  PubMed  Google Scholar 

  23. Shibata H, Hara H. Blood clearance of< 99m> Tc-phytate for evaluation of hepatic dysfunction in rats. J Toxicol Sci. 1988;13(2):83–96.

    Article  CAS  PubMed  Google Scholar 

  24. Nićiforović N, et al. Antioxidant activity of selected plant species; potential new sources of natural antioxidants. Food Chem Toxicol. 2010;48(11):3125–30.

    Article  PubMed  Google Scholar 

  25. Chang C-C, et al. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal. 2002;10:178–182.

  26. Selmar D, et al. Transfer of pyrrolizidine alkaloids between living plants: a disregarded source of contaminations. Environ Pollut. 2019;248:456–61.

  27. Naldi L, Griffiths C. Traditional therapies in the management of moderate to severe chronic plaque psoriasis: an assessment of the benefits and risks. Br J Dermatol. 2005;152(4):597–615.

    Article  CAS  PubMed  Google Scholar 

  28. Czarnecka-Operacz M, Sadowska-Przytocka A. The possibilities and principles of methotrexate treatment of psoriasis–the updated knowledge. Adv Dermatol Allergol/Postȩpy Dermatologii i Alergologii. 2014;31(6):392.

    Article  Google Scholar 

  29. Bidaki R, et al. Accidental chronic poisoning with methotrexate; report of two cases. Emergency. 2017;5(1):57.

    Google Scholar 

  30. Feinsilber D, et al. Evaluation, identification, and management of acute methotrexate toxicity in high-dose methotrexate administration in hematologic malignancies. Cureus. 2018;10(1):2040.

    Google Scholar 

  31. Li X, et al. Identifying risk factors for high-dose methotrexate-induced toxicities in children with acute lymphoblastic leukemia. Cancer Manag Res. 2019;11:6265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kremer JM, Alarcón GS, et al. Methotrexate for rheumatoid arthritis. Arthritis Rheum. 1994;37(3):316–28.

    Article  CAS  PubMed  Google Scholar 

  33. Walker T, Rhodes P, Westmoreland C. The differential cytotoxicity of methotrexate in rat hepatocyte monolayer and spheroid cultures. Toxicol In Vitro. 2000;14(5):475–85.

    Article  CAS  PubMed  Google Scholar 

  34. Şener G, et al. β-glucan ameliorates methotrexate-induced oxidative organ injury via its antioxidant and immunomodulatory effects. Eur J Pharmacol. 2006;542(1–3):170–8.

    Article  PubMed  Google Scholar 

  35. Uraz S, et al. Role of ursodeoxycholic acid in prevention of methotrexate-induced liver toxicity. Dig Dis Sci. 2008;53(4):1071–7.

    Article  CAS  PubMed  Google Scholar 

  36. Csordas K, et al. Comparison of pharmacokinetics and toxicity after high-dose methotrexate treatments in children with acute lymphoblastic leukemia. Anticancer Drugs. 2013;24(2):189–97.

    Article  CAS  PubMed  Google Scholar 

  37. Erdogan E, et al. Rutin ameliorates methotrexate induced hepatic injury in rats. Acta cirurgica brasileira. 2015;30(11):778–84.

    Article  PubMed  Google Scholar 

  38. Elbarbary NS, Ismail EAR. Omega-3 as an adjuvant therapy ameliorates methotrexate-induced hepatotoxicity in children and adolescents with acute lymphoblastic leukemia (ALL): a randomized placebo-controlled study. Nutrition. 2015;32:41–7.

    Article  PubMed  Google Scholar 

  39. Howard SC, et al. Preventing and managing toxicities of high-dose methotrexate. Oncologist. 2016;21(12):1471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gressier B, et al. Pro-oxidant properties of methotrexate: evaluation and prevention by an anti-oxidant drug. Pharmazie. 1994;49(9):679–81.

    CAS  PubMed  Google Scholar 

  41. Çetin A, et al. Role of grape seed extract on methotrexate induced oxidative stress in rat liver. Am J Chin Med. 2008;36(05):861–72.

    Article  PubMed  Google Scholar 

  42. Didier F, et al. Caffeoyl derivatives: major antioxidant compounds of some wild herbs of the Asteraceae family. Food Nutr Sci. 2011;2:181–192.

  43. D’evoli L, et al. Red chicory (Cichorium intybus L. cultivar) as a potential source of antioxidant anthocyanins for intestinal health. Oxid Med Cell Longev. 2013;2013:1–8.

    Article  Google Scholar 

  44. Rafieian-Kopaei M, Baradaran A, Rafieian M. Plants antioxidants: from laboratory to clinic. J Nephropathol. 2013;2(2):152–3.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mimica-Dukic N, et al. Antimicrobial and antioxidant activities of Melissa officinalis L. (Lamiaceae) essential oil. J Agric Food Chem. 2004;52(9):2485–9.

    Article  CAS  PubMed  Google Scholar 

  46. Zeraatpishe A, Oryan S, et al. Effects of Melissa officinalis L. on oxidative status and DNA damage in subjects exposed to long-term low-dose ionizing radiation. SAGE J. 2011;27(3):205–12.

    CAS  Google Scholar 

  47. Martins EN, et al. Protective effect of Melissa officinalis aqueous extract against Mn-induced oxidative stress in chronically exposed mice. Brain Res Bull. 2012;87(1):74–9.

    Article  CAS  PubMed  Google Scholar 

  48. Kamdem JP, et al. Antioxidant activity, genotoxicity and cytotoxicity evaluation of lemon balm (Melissa officinalis L.) ethanolic extract: its potential role in neuroprotection. Ind Crops Prod. 2013;51:26–34.

    Article  CAS  Google Scholar 

  49. Picard D, et al. Extrahepatic uptake of technetium-99m-phytate: a prognostic index in patients with cirrhosis. J Nucl Med. 1990;31(4):436–40.

    CAS  PubMed  Google Scholar 

  50. Hosseinimehr SJ, et al. Protective effects of thymol against nephrotoxicity induced by cisplatin with using 99mTc-DMSA in mice. Ren Fail. 2015;37(2):280–4.

    Article  CAS  PubMed  Google Scholar 

  51. Stojanović NM, et al. Toxic essential oils, part VI: acute oral toxicity of lemon balm (Melissa officinalis L.) essential oil in BALB/c mice. Food Chem Toxicol. 2019;133:110794.

    Article  PubMed  Google Scholar 

  52. Amirfakhrian H, et al. The use of 99m Tc-phytate for assessment the protective effect of vitamin E against hepatotoxicity induced by methotrexat in rat. Nucl Med Rev. 2018;21(1):8–13.

    Article  Google Scholar 

  53. Skotti E, et al. Total phenolic content, antioxidant activity and toxicity of aqueous extracts from selected Greek medicinal and aromatic plants. Ind Crops Prod. 2014;53:46–54.

    Article  CAS  Google Scholar 

  54. Namjoo A, et al. Biochemical, liver and renal toxicities of Melissa officinals hydroalcoholic extract on balb/C mice. J HerbMed Pharmacol. 2013;2(2):35–40.

    Google Scholar 

  55. Hashemnia M, et al. Toxicological evaluation of chronic oral administration of Melissa officinalis hydro-ethanol extract in Sprague-Dawley rats. Veterinary Science Development, 2017;7(1):26–31.

  56. Selmar D, et al. Transfer of pyrrolizidine alkaloids between living plants: a disregarded source of contaminations. Environ Pollut. 2019;248:456–61.

    Article  CAS  PubMed  Google Scholar 

  57. Bodi D, et al. Determination of pyrrolizidine alkaloids in tea, herbal drugs and honey. Food Addit Contam Part A. 2014;31(11):1886–95.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was the subject of a thesis of Nasrin Mehraban as an MSc Student of Mazandaran University of Medical Science Sari, IRAN, through grant no. 2691.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zohreh Noaparast.

Ethics declarations

Conflict of interest

There are no conflicts of interest. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahani, S., Mehraban, N., Talebpour Amiri, F. et al. Melissa Officinalis L. aqueous extract pretreatment decreases methotrexate-induced hepatotoxicity at lower dose and increases 99mTc-phytate liver uptake, as a probe of liver toxicity assessment, in rats. Ann Nucl Med 37, 166–175 (2023). https://doi.org/10.1007/s12149-022-01813-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-022-01813-w

Keywords

Navigation