Skip to main content

Advertisement

Log in

A different overview of staging PET/CT images in patients with esophageal cancer: the role of textural analysis with machine learning methods

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

This study evaluates the ability of several machine learning (ML) algorithms, developed using volumetric and texture data extracted from baseline 18F-FDG PET/CT studies performed initial staging of patient with esophageal cancer (EC), to predict survival and histopathology.

Methods

The initial staging 18F-FDG PET/CT images obtained on newly diagnosed EC patients between January 2008 and June 2019 were evaluated using LIFEx software. A region of interest (ROI) of the primary tumor was created and volumetric and textural features were obtained. A significant relationship between these features and pathological subtypes, 1-year, and 5-year survival was investigated. Due to the nonhomogeneity of the data, nonparametric test (The Mann–Whitney U test) was used for each feature, in pairwise comparisons of independent variables. A p value of < 0.05 was considered significant. Receiver operating curve (ROC) analysis was performed for features with p < 0.05. Correlation between the significant features was evaluated with Spearman correlation test; features with correlation coefficient < 0.8 were evaluated with several ML algorithms.

Results

In predicting survival in a 1-year follow-up J48 was obtained as the most successful algorithm (AUC: 0.581, PRC: 0.565, MCC: 0.258, acc: 64.29%). 5-year survival results were more promising than 1-year survival results with (AUC: 0.820, PRC: 0.860, MCC: 271, acc: 81.36%) by logistic regression. It is revealed that the most successful algorithm was naive bayes (AUC: 0.680 PRC: 0.776, MCC: 0.298, acc: 82.66%) in the histopathological discrimination.

Conclusion

Texture analysis with ML algorithms could be predictive of overall survival and discriminating histopathological subtypes of EC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Thrumurthy SG, Chaudry MA, Thrumurthy SSD, Mughal M. Oesophageal cancer: risks, prevention, and diagnosis. BMJ. 2019;366:l4373.

    Article  Google Scholar 

  2. Martin-Richard M, DíazBeveridge R, Arrazubi V, Alsina M, Galan Guzmán M, Custodio AB, et al. SEOM Clinical Guideline for the diagnosis and treatment of esophageal cancer. Clin Transl Oncol. 2016;18:1179–86.

    Article  CAS  Google Scholar 

  3. Bedard PL, Hansen AR, Ratain MJ, Siu LL. Tumour heterogeneity in the clinic. Nature. 2013;501:355–64.

    Article  CAS  Google Scholar 

  4. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48:441–6.

    Article  Google Scholar 

  5. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2016;278:563–77.

    Article  Google Scholar 

  6. Kim SJ, Pak K, Chang S. Determination of regional lymph node status using 18F-FDG PET/CT parameters in oesophageal cancer patients: comparison of SUV, volumetric parameters and intratumoral heterogeneity. Br J Radiol. 2016;89:20150673.

    Article  Google Scholar 

  7. Coroller TP, Agrawal V, Huynh E, Narayan V, Lee SW, Mak RH, et al. Radiomic-based pathological response prediction from primary tumors and lymph nodes in NSCLC. J Thorac Oncol. 2017;12:467–76.

    Article  Google Scholar 

  8. Orlhac F, Soussan M, Maisonobe JA, Garcia CA, Vanderlinden B, Buvat I. Tumor texture analysis in 18F-FDG PET: relationships between texture parameters, histogram indices, standardized uptake values, metabolic volumes, and total lesion glycolysis. J Nucl Med. 2014;55:414–22.

    Article  CAS  Google Scholar 

  9. Hatt M, Majdoub M, Vallières M, Tixier F, Le Rest CC, Groheux D, et al. 18F-FDG PET uptake characterization through texture analysis: investigating the complementary nature of heterogeneity and functional tumor volume in a multi-cancer site patient cohort. J Nucl Med. 2015;56:38–44.

    Article  CAS  Google Scholar 

  10. van Rossum PS, Fried DV, Zhang L, Hofstetter WL, van Vulpen M, Meijer GJ, Court LE, et al. The incremental value of subjective and quantitative assessment of 18F-FDG PET for the prediction of pathologic complete response to preoperative chemoradiotherapy in esophageal cancer. J Nucl Med. 2016;57:691–700.

    Article  Google Scholar 

  11. Wheeler JM, Warren BF, Mortensen NJ, Ekanyaka N, Kulacoglu H, Jones AC, et al. Quantification of histologic regression of rectal cancer after irradiation: a proposal for a modified staging system. Dis Colon Rectum. 2002;45:1051–6.

    Article  CAS  Google Scholar 

  12. Nioche C, Orlhac F, Boughdad S, Reuze S, Goya-Outi J, Robert C, et al. LIFEx: a freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity. Cancer Res. 2018;78:4786–9.

    Article  CAS  Google Scholar 

  13. Orlhac F, Thézé B, Soussan M, Boisgard R, Buvat I. Multiscale texture analysis: from 18F-FDG PET images to histologic images. J Nucl Med. 2016;57:1823–8.

    Article  CAS  Google Scholar 

  14. Saito T, Rehmsmeier M. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS ONE. 2015;10:e0118432.

    Article  Google Scholar 

  15. Foley KG, Hills RK, Berthon B, Marshall C, Parkinson C, Lewis WG, et al. Development and validation of a prognostic model incorporating texture analysis derived from standardised segmentation of PET in patients with oesophageal cancer. Eur Radiol. 2018;28:428–36.

    Article  Google Scholar 

  16. Cao Q, Li Y, Li Z, An D, Li B, Lin Q. Development and validation of a radiomics signature on differentially expressed features of 18F-FDG PET to predict treatment response of concurrent chemoradiotherapy in thoracic esophagus squamous cell carcinoma. Radiother Oncol. 2020;146:9–15.

    Article  CAS  Google Scholar 

  17. Zhang C, Shi Z, Kalendralis P, Whybra P, Parkinson C, Berbee M, et al. Prediction of lymph node metastases using pre-treatment PET radiomics of the primary tumour in esophageal adenocarcinoma: an external validation study. Br J Radiol. 2021;94:20201042.

    Article  Google Scholar 

  18. Beukinga RJ, Hulshoff JB, Mul VEM, Noordzij W, Kats-Ugurlu G, Slart RHJA, et al. Prediction of response to neoadjuvant chemotherapy and radiation therapy with baseline and restaging 18F-FDG PET imaging biomarkers in patients with esophageal cancer. Radiology. 2018;287:983–92.

    Article  Google Scholar 

  19. Tan S, Kligerman S, Chen W, Lu M, Kim G, Feigenberg S, et al. Spatial-temporal 18F-FDG-PET features for predicting pathologic response of esophageal cancer to neoadjuvant chemoradiation therapy. Int J Radiat Oncol Biol Phys. 2013;85:1375–82.

    Article  Google Scholar 

  20. Nakajo M, Jinguji M, Nakabeppu Y, Nakajo M, Higashi R, Fukukura Y, et al. Texture analysis of 18F-FDG PET/CT to predict tumour response and prognosis of patients with esophageal cancer treated by chemoradiotherapy. Eur J Nucl Med Mol Imaging. 2017;44:206–14.

    Article  CAS  Google Scholar 

  21. Paul D, Su R, Romain M, Sébastien V, Pierre V, Isabelle G. Feature selection for outcome prediction in oesophageal cancer using genetic algorithm and random forest classifier. Comput Med Imaging Graph. 2017;60:42–9.

    Article  Google Scholar 

  22. Yip SS, Coroller TP, Sanford NN, Mamon H, Aerts HJ, Berbeco RI. Relationship between the temporal changes in positron-emission-tomography-imaging-based textural features and pathologic response and survival in esophageal cancer patients. Front Oncol. 2016;6:72.

    Article  Google Scholar 

  23. Zhang YH, Herlin G, Rouvelas I, Nilsson M, Lundell L, Brismar TB. Texture analysis of computed tomography data using morphologic and metabolic delineation of esophageal cancer-relation to tumor type and neoadjuvant therapy response. Dis Esophagus. 2019;32:doy096.

    PubMed  Google Scholar 

  24. DomperArnal MJ, Ferrández Arenas Á, Lanas AÁ. Esophageal cancer: risk factors, screening and endoscopic treatment in Western and Eastern countries. World J Gastroenterol. 2015;21:7933–43.

    Article  Google Scholar 

  25. Cook GJR, Azad G, Owczarczyk K, Owczarczyk K, Siddique M, Goh V. Challenges and promises of PET radiomics. Int J Radiat Oncol Biol Phys. 2018;102:1083–9.

    Article  Google Scholar 

  26. Ha S, Choi H, Paeng JC, Cheon GJ. Radiomics in oncological PET/CT: a methodological overview. Nucl Med Mol Imaging. 2019;53:14–29.

    Article  Google Scholar 

  27. Hatt M, Tixier F, Pierce L, Kinahan PE, Le Rest CC, Visvikis D. Characterization of PET/CT images using texture analysis: the past, the present… any future? Eur J Nucl Med Mol Imaging. 2017;44:151–65.

    Article  Google Scholar 

  28. Liberini V, De Santi B, Rampado O, Gallio E, Dionisi B, Ceci F, et al. Impact of segmentation and discretization on radiomic features in 68Ga-DOTA-TOC PET/CT images of neuroendocrine tumor. EJNMMI Phys. 2021;8:21.

    Article  Google Scholar 

  29. Belli ML, Mori M, Broggi S, Cattaneo GM, Bettinardi V, Dell’Oca I, et al. Quantifying the robustness of 18F-FDG-PET/CT radiomic features with respect to tumor delineation in head and neck and pancreatic cancer patients. Phys Med. 2018;49:105–11.

    Article  Google Scholar 

  30. Leijenaar RT, Carvalho S, Velazquez ER, van Elmpt WJ, Parmar C, Hoekstra OS, et al. Stability of FDG-PET Radiomics features: an integrated analysis of test-retest and inter-observer variability. Acta Oncol. 2013;52:1391–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors declared that there is no conflict of interest concerning this manuscript. This study did not receive any specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Funding

The authors received no financial support for the research and/or authorship of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazlı Pınar Karahan Şen.

Ethics declarations

Conflict of interest

No potential conflicts of interest were disclosed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karahan Şen, N.P., Aksu, A. & Çapa Kaya, G. A different overview of staging PET/CT images in patients with esophageal cancer: the role of textural analysis with machine learning methods. Ann Nucl Med 35, 1030–1037 (2021). https://doi.org/10.1007/s12149-021-01638-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-021-01638-z

Keywords

Navigation