Skip to main content
Log in

Liquid chromatography/electrospray ionization/ion mobility spectrometry of chlorophenols with full flow from large bore LC columns

  • Original Research
  • Published:
International Journal for Ion Mobility Spectrometry

Abstract

Chlorophenols (CPs) as a mixture of fourteen congeners from mono- to pentachlorophenol were determined using liquid chromatography/electrospray ionization/ion mobility spectrometry (LC/ESI/IMS) to describe the response and analytical performance of a mobility spectrometer as a detector for liquid chromatography. The mobility spectrometer was equipped with an interface so that flows from a large bore column could be electrosprayed directly into the drift tube at flow rates up to 500 μL/min without splitting of flow. A linear gradient of the mobile phase from 40% to 90% methanol and 60% to 10% acetic acid (AcOH)–ammonium acetate buffer solution over 40 min with a C18 column provided baseline separations though mobility spectra for CPs were influenced by mobile phase composition. Product ions formed from CPs with ESI included phenoxide anions CPO, AcOH·CPO, CPOH·CPO, and Na+·(CPO)2 and were found to be governed by the drift gas temperature. Ions were identified using LC/ESI/mass spectrometry (MS) and supported by results from computational modeling. Quantitative response was affected by congener structure through the acidities of the OH moiety and by the composition of the mobile phase. Limits of detection ranged from 0.135 mg/L for 2,3,5-trichlorophenol and pentachlorophenol to 2.23 mg/L for 2-chlorophenol; corresponding linear ranges were 20 and 70.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Whitehouse C, Dreyer R, Yamashita M, Fenn J (1985) Anal Chem 57:675–679

    Article  CAS  Google Scholar 

  2. Hail M, Lewis S, Jardine I (1990) J Microcolumn Sep 2:285–292

    Article  CAS  Google Scholar 

  3. Mehlis B, Kertscher U (1997) Anal Chim Acta 352:71–83

    Article  CAS  Google Scholar 

  4. Bischoff R (2002) Chromatogr Sci Ser 87:689–738

    CAS  Google Scholar 

  5. Smyth W, McClean S, Hack C, Ramachandran V, Doherty B, Joyce C, O'Donnell F, Smyth T, O'Kane E, Brooks P (2006) Trends Anal Chem 25:572–582

    Article  CAS  Google Scholar 

  6. Levin D, Miller R, Nazarov E, Vouros P (2006) Anal Chem 78:5443–5452

    Article  CAS  Google Scholar 

  7. Levin D, Vouros P, Miller R, Nazarov E (2007) J Am Soc Mass Spectrom 18:502–511

    Article  CAS  Google Scholar 

  8. Barnett D, Ells B, Guevremont R, Purves R (2002) J Am Soc Mass Spectrom 13:1282–1291

    Article  CAS  Google Scholar 

  9. Kapron J, Wu J, Mauriala T, Clark P, Purves R, Bateman K (2006) Rapid Commun Mass Spectrom 20:1504–1510

    Article  CAS  Google Scholar 

  10. Wu S, Xia Y, Jemal M (2007) Rapid Commun Mass Spectrom 21:3667–3676

    Article  CAS  Google Scholar 

  11. Wu C, Klasmeier J, Hill H (1999) Rapid Commun Mass Spectrom 13:1138–1142

    Article  CAS  Google Scholar 

  12. Wu C, Siems W, Hill H (2000) Anal Chem 72:396–403

    Article  CAS  Google Scholar 

  13. Matz L, Hill H (2001) Anal Chem 73:1664–1669

    Article  CAS  Google Scholar 

  14. Budimir N, Weston D, Creaser C (2007) Analyst 132:34–40

    Article  CAS  Google Scholar 

  15. Tang X, Bruce J, Hill H (2006) Anal Chem 78:7751–7760

    Article  CAS  Google Scholar 

  16. Lee D, Wu C, Hill H (1998) J Chromatogr A 822:1–9

    Article  CAS  Google Scholar 

  17. Matz L, Dion H, Hill H (2002) J Chromatogr A 946:59–68

    Article  CAS  Google Scholar 

  18. Eiceman G, Karpas Z (2005) Ion mobility spectrometry, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  19. Insa S, Besalu E, Salvado V, Antico E (2007) J Sep Sci 30:722–730

    Article  CAS  Google Scholar 

  20. Wild S, Harrad S, Jones K (1993) Water Res 27:1527–1534

    Article  CAS  Google Scholar 

  21. Santos F, Jauregui O, Pinto F, Galceran M (1998) J Chromatogr A 823:249–258

    Article  CAS  Google Scholar 

  22. Eiceman G, Bergloff J, Rodriguez J, Munro W, Karpas Z (1999) J Am Soc Mass Spectrom 10:1157–1165

    Article  CAS  Google Scholar 

  23. Eiceman G, Nazarov E, Rodriguez J, Stone J (2001) Rev Sci Intrum 72:3610–3621

    Article  CAS  Google Scholar 

  24. Eiceman G, Nazarov E, Stone J (2003) Anal Chim Acta 493:185–194

    Article  CAS  Google Scholar 

  25. Ugland K, Lundanes E, Greibrokk T, Bjoerseth A (1981) J Chromatogr 213:83–90

    Article  CAS  Google Scholar 

  26. Han J, Deming R, Tao F (2004) J Phys Chem A 108:7736–7743

    Article  CAS  Google Scholar 

  27. Henriksen T, Juhler R, Svensmark B, Cech N (2005) J Am Soc Mass Spectrom 16:446–455

    Article  CAS  Google Scholar 

  28. Daum K, Atkinson D, Ewing R, Knighton W, Grimsrud E (2001) Talanta 54:299–306

    Article  CAS  Google Scholar 

  29. Schroder W, Matz G, Kubler J (1998) Field Anal Chem Technol 2:287–297

    Article  CAS  Google Scholar 

  30. Dion H, Ackerman L, Hill H (2002) Talanta 57:1161–1171

    Article  CAS  Google Scholar 

  31. Asbury G, Klasmeier J, Hill H (2000) Talanta 50:1291–1298

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary A. Eiceman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tadjimukhamedov, F.K., Stone, J.A., Papanastasiou, D. et al. Liquid chromatography/electrospray ionization/ion mobility spectrometry of chlorophenols with full flow from large bore LC columns. Int. J. Ion Mobil. Spec. 11, 51–60 (2008). https://doi.org/10.1007/s12127-008-0004-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12127-008-0004-7

Keywords

Navigation