Skip to main content

Advertisement

Log in

Stem Cell Therapy: Challenges Ahead

  • Review article
  • Published:
The Indian Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Stem cells have generated great interest for their potential therapeutic use because of their capacity to self-renew indefinitely and to generate all cell lineages (pluripotency). Many diseases such as neurodegenerative disorders or diabetes are caused by loss of functionality or deficiency of a particular cell type. Stem cells differentiated into a specific cell type such as pancreatic β-cells or neurons, for example, thus hold great promise for regenerative medicine. However, many challenges have to be overcome before stem cell therapy can become a viable clinical approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thompson JA, Istkovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cells derived from human blastocysts. Science. 1998;282:1145–7.

    Article  Google Scholar 

  2. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.

    Article  CAS  PubMed  Google Scholar 

  3. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.

    Article  CAS  PubMed  Google Scholar 

  4. Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell. 2010;142:375–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Pang ZP, Yang N, Vierbuchen T, Ostermeier A, Fuentes DR, Yang TQ, et al. Induction of human neuronal cells by defined transcription factors. Nature. 2011;476:220–3.

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH. Viable offspring derived from fetal and adult mammalian cells. Nature. 1997;385:810–3.

    Article  CAS  PubMed  Google Scholar 

  7. Polejaeva IA, Chen SH, Vaught TD, Page RL, Mullins J, Ball S, et al. Cloned pigs produced by nuclear transfer from adult somatic cells. Nature. 2000;407:86–90.

    Article  CAS  PubMed  Google Scholar 

  8. Noggle S, Fung HL, Gore A, Martinez H, Satriani KC, Prosser R, et al. Human oocytes reprogram somatic cells to a pluripotent state. Nature. 2011;478:70–5.

    Article  CAS  PubMed  Google Scholar 

  9. Friedenstein AJ, Gorskaja AF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic origins. Exp Hematol. 1976;4:267–74.

    CAS  PubMed  Google Scholar 

  10. Dominici M, LeBlanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criterion for defining mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy. 2006;8:315–7.

    Article  CAS  PubMed  Google Scholar 

  11. Keating A. Mesenchymal stromal cells: new directions. Cell Stem Cell. 2012;10:709–16.

    Article  CAS  PubMed  Google Scholar 

  12. Jiang Y, Jahagardar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, et al. Pluripotent mesenchymal stem cells derived from adult marrow. Nature. 2002;418:41–9.

    Article  CAS  PubMed  Google Scholar 

  13. Sullivan MJ. Banking on cord blood stem cells. Nat Rev Cancer. 2008;8:555–63.

    Article  CAS  PubMed  Google Scholar 

  14. Cohen DE, Melton D. Turning straw into gold: directing cell fate for regenerative medicine. Nat Rev Genet. 2011;12:243–52.

    Article  CAS  PubMed  Google Scholar 

  15. Yamanaka S. A fresh look at iPS cells. Cell. 2009;137:13–7.

    Article  CAS  PubMed  Google Scholar 

  16. Drukker M, Katz G, Urbach A, Schuldiner M, Markel G, Itskovitz-Eldor J, et al. Characterization of the expression of MHC proteins in human embryonic stem cells. Proc Natl Acad Sci U S A. 2002;99:9864–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Taylor CJ, Bolton EM, Pocock S, Sharples LD, Pederson RA, Bradley JA. Banking on human embryonic stem cells estimating the number of donor cell lines needed for HLA matching. Lancet. 2005;366:2019–25.

    Article  PubMed  Google Scholar 

  18. Zhao T, Zhang ZN, Rong Z, Xu Y. Immunogenicity of induced pluripotent stem cells. Nature. 2011;474:212–5.

    Article  CAS  PubMed  Google Scholar 

  19. Apostolou E, Hochedlinger K. iPS cells under attack. Nature. 2011;474:165–6.

    Article  CAS  PubMed  Google Scholar 

  20. Amit M, Carpenter MK, Inokuma MS, Chiu CP, Harris CP, Waknitz MA, et al. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol. 2000;227:271–8.

    Article  CAS  PubMed  Google Scholar 

  21. Baker DE, Harrison NJ, Maltby E, Smith K, Moore HD, Shaw PJ, et al. Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nature. 2007;25:207–15.

    CAS  Google Scholar 

  22. Hiyama E, Hiyama K. Telomere and telomerase in stem cells. Br J Cancer. 2007;96:1020–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Eilers M, Eisenman RN. Myc’s broad reach. Genes Dev. 2008;22:2755–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Ben-David U, Benvenisty N. The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer. 2011;11:268–77.

    Article  CAS  PubMed  Google Scholar 

  25. Werbowetski-Ogilvie TE, Bosse M, Stewart M, Schnerch A, Ramos-Mejia V, Rouleau A, et al. Characterization of human embryonic stem cells with features of neoplastic progression. Nat Biotechnol. 2009;27:91–7.

    Article  CAS  PubMed  Google Scholar 

  26. Hussein SM, Batada NN, Vuoristo S, Ching RW, Autio R, Närvä E, et al. Copy number variation and selection during reprogramming to pluripotency. Nature. 2011;471:58–62.

    Article  CAS  PubMed  Google Scholar 

  27. Gore A, Li Z, Fung HL, Young JE, Agarwal S, Antosiewicz-Bourget J, et al. Somatic coding mutations in human induced pluripotent stem cells. Nature. 2011;471:63–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR, Hon G, et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature. 2011;471:68–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Pera MF. The dark side of induced pluripotency. Nature. 2011;471:46–7.

    Article  CAS  PubMed  Google Scholar 

  30. Amariglio N, Hirshberg A, Scheithauer BW, Cohen Y, Loewenthal R, Trakhtenbrot L, et al. Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med. 2009;6:e1000029.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Quaini F, Urbanek K, Beltrami AP, Finato N, Beltrami CA, Nadal-Ginard B, et al. Chimerism of the transplanted heart. N Engl J Med. 2002;346:5–15.

    Article  PubMed  Google Scholar 

  32. Jackson KA, Majka SM, Wang H, Pocius J, Hartley CJ, Majesky MW, et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest. 2001;107:1395–402.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Deb A, Wang S, Skelding KA, Miller D, Simper D, Caplice NM. Bone marrow-derived cardiomyocytes are present in adult human heart: a study of gender mismatched bone marrow transplantation patients. Circulation. 2003;107:1247–9.

    Article  PubMed  Google Scholar 

  34. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, et al. Bone marrow cells regenerate infarcted myocardium. Nature. 2001;410:701–5.

    Article  CAS  PubMed  Google Scholar 

  35. Balsam LB, Wagers AJ, Christensen JL, Kofidis T, Weissman IL, Robbins RC. Haematopoietic stem cells adopt mature haematopoietic fates in ischemic myocardium. Nature. 2004;428:668–73.

    Article  CAS  PubMed  Google Scholar 

  36. Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M, et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature. 2004;428:664–8.

    Article  CAS  PubMed  Google Scholar 

  37. Mckay R. Stem cells in the central nervous system. Science. 1997;276:66–71.

    Article  CAS  PubMed  Google Scholar 

  38. Olanow CW, Kordower JH, Lang AE, Obeso JA. Dopaminergic transplantation for Parkinson’s disease: current status and future prospects. Ann Neurol. 2009;66:591–6.

    Article  CAS  PubMed  Google Scholar 

  39. Baker M. Stem cell pioneer bows out. Nature. 2011;479:459.

    Article  CAS  PubMed  Google Scholar 

  40. Schwartz SD, Hubschman JP, Heilwell G, Franco-Cardenas V, Pan CK, Ostrick RM, et al. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet. 2012;379:713–20.

    Article  CAS  PubMed  Google Scholar 

  41. Wilson JM. A history lesson for stem cells. Science. 2009;324:727–8.

    Article  CAS  PubMed  Google Scholar 

  42. Hyun I, Lindvall O, Ahrlund-Richter L, Cattaneo E, Cavazzana-Calvo M, Cossu G, et al. New ISSCR guidelines underscore major principles for responsible translational stem cell research. Cell Stem Cell. 2008;3:607–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

None.

Source of Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyakam Bhagavati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhagavati, S. Stem Cell Therapy: Challenges Ahead. Indian J Pediatr 82, 286–291 (2015). https://doi.org/10.1007/s12098-014-1521-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12098-014-1521-5

Keywords

Navigation