Skip to main content

Advertisement

Log in

Adoptive cell therapies in thoracic malignancies: a comprehensive review

  • REVIEW ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

This review aims to summarize recent studies and findings within adoptive cell therapies, including tumor-infiltrating lymphocytes, genetically engineered T cell receptors, and chimeric antigen receptor T cells, in the treatment of thoracic malignancies, including non-small cell lung cancer, small cell lung cancer, and malignant pleural mesothelioma. Several trials are ongoing, and a few have reported results, suggesting that adoptive cell therapies may represent a potential treatment option for these patients, especially when checkpoint inhibition has failed. We also discuss the potential implementation of these therapies, as they present a new toxicity profile and an intrinsic financial burden. Despite the challenges to overcome, such as the accurate identification of antigens and developing strategies to improve efficacy and toxicity profiles, new cellular therapies are experiencing significant development in the field of thoracic malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209.

    Article  PubMed  Google Scholar 

  2. Ettinger DS, Wood DE, Aisner DL, Akerley W, Bauman JR, Bharat A, et al. Non-small cell lung cancer, Version 3.2022. J Natl Compr Canc Netw. 2022;20(5):497–530.

    Article  PubMed  Google Scholar 

  3. Novello S, Kowalski DM, Luft A, Gümüş M, Vicente D, Mazières J, et al. Pembrolizumab plus chemotherapy in squamous non-small-cell lung cancer: 5-year update of the phase III KEYNOTE-407 study. J Clin Oncol. 2023;41(11):1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Garassino MC, Gadgeel S, Speranza G, Felip E, Esteban E, Dómine M, et al. Pembrolizumab plus pemetrexed and platinum in nonsquamous non-small-cell lung cancer: 5-year outcomes from the phase 3 KEYNOTE-189 Study. J Clin Oncol. 2023;41(11):1992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. García-Campelo R, Sullivan I, Arriola E, Insa A, Juan Vidal O, Cruz-Castellanos P, et al. SEOM-GECP Clinical guidelines for diagnosis, treatment and follow-up of small-cell lung cancer (SCLC) (2022). Clin Transl Oncol. 2023;25(9):2679.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Horn L, Mansfield AS, Szczęsna A, Havel L, Krzakowski M, Hochmair MJ, et al. First-line atezolizumab plus chemotherapy in extensive-stage small-cell lung cancer. N Engl J Med. 2018;379(23):2220.

    Article  CAS  PubMed  Google Scholar 

  7. Rudin CM, Awad MM, Navarro A, Gottfried M, Peters S, Csoszi T, et al. Pembrolizumab or placebo plus etoposide and platinum as first-line therapy for extensive-stage small-cell lung cancer: randomized, double-blind, phase III KEYNOTE-604 study. J Clin Oncol. 2020;38(21):2369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Paz-Ares L, Dvorkin M, Chen Y, Reinmuth N, Hotta K, Trukhin D, et al. Durvalumab plus platinum–etoposide versus platinum–etoposide in first-line treatment of extensive-stage small-cell lung cancer (CASPIAN): a randomised, controlled, open-label, phase 3 trial. Lancet. 2019;394(10212):1929.

    Article  CAS  PubMed  Google Scholar 

  9. Remon J, Aldea M, Besse B, Planchard D, Reck M, Giaccone G, et al. Small cell lung cancer: a slightly less orphan disease after immunotherapy. Ann Oncol. 2021;32(6):698–709.

    Article  CAS  PubMed  Google Scholar 

  10. Peters S, Scherpereel A, Cornelissen R, Oulkhouir Y, Greillier L, Kaplan MA, et al. First-line nivolumab plus ipilimumab versus chemotherapy in patients with unresectable malignant pleural mesothelioma: 3-year outcomes from CheckMate 743. Ann Oncol. 2022;33(5):488–99.

    Article  CAS  PubMed  Google Scholar 

  11. Beasley MB, Galateau-Salle F, Dacic S. Pleural mesothelioma classification update. Virchows Arch. 2021;478(1):59–72. https://doi.org/10.1007/s00428-021-03031-7.

    Article  PubMed  Google Scholar 

  12. Sadelain M, Brentjens R, Rivière I. The basic principles of chimeric antigen receptor design. Cancer Discov. 2013;3(4):388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Maher J. Chimeric antigen receptor (CAR) T-Cell therapy for patients with lung cancer: current perspectives. Onco Targets Ther. 2023;16:515–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chmielewski M, Abken H. TRUCKS, the fourth-generation CAR T cells: current developments and clinical translation. Adv Cell Gene Ther. 2020;3(3):e84.

    Article  CAS  Google Scholar 

  15. Woo EY, Yeh H, Chu CS, Schlienger K, Carroll RG, Riley JL, et al. Cutting edge: regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. J Immunol. 2002;168(9):4272.

    Article  CAS  PubMed  Google Scholar 

  16. Katiyar V, Chesney J, Kloecker G. Cellular therapy for lung cancer: focusing on chimeric antigen receptor T (CAR T) cells and tumor-infiltrating lymphocyte (TIL) therapy. Cancers (Basel). 2023;15(14):3733.

    Article  CAS  PubMed  Google Scholar 

  17. Liu M, Huang W, Guo Y, Zhou Y, Zhi C, Chen J, et al. CAR NK-92 cells targeting DLL3 kill effectively small cell lung cancer cells in vitro and in vivo. J Leukoc Biol. 2022;112(4):901–11.

    Article  CAS  PubMed  Google Scholar 

  18. Nicolini F, Bocchini M, Bronte G, Delmonte A, Guidoboni M, Crinò L, et al. Malignant pleural mesothelioma: state-of-the-art on current therapies and promises for the future. Front Oncol. 2020;9:1519.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Qu J, Mei Q, Chen L, Zhou J. Chimeric antigen receptor (CAR)-T-cell therapy in non-small-cell lung cancer (NSCLC): current status and future perspectives. Cancer Immunol Immunother. 2021;70(3):619–31.

    Article  CAS  PubMed  Google Scholar 

  20. de Jong D, Das JP, Ma H, Pailey Valiplackal J, Prendergast C, Roa T, et al. Novel targets, novel treatments: the changing landscape of non-small cell lung cancer. Cancers. 2023;15(10):2855.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhang Y, Zhang Z, Ding Y, Fang Y, Wang P, Chu W, et al. Phase I clinical trial of EGFR-specific CAR-T cells generated by the piggyBac transposon system in advanced relapsed/refractory non-small cell lung cancer patients. J Cancer Res Clin Oncol. 2021;147(12):3725–34. https://doi.org/10.1007/s00432-021-03613-7.

    Article  CAS  PubMed  Google Scholar 

  22. Li G, Liao G, Xie J, Liu B, Li X, Qiu M. Overexpression of SMAD7 improves the function of EGFR -targeted human CAR-T cells against non-small-cell lung cancer. Respirology. 2023;28(9):869–80. https://doi.org/10.1111/resp.14541.

    Article  PubMed  Google Scholar 

  23. Lan Y, Ni W, Tai G. Expression of MUC1 in different tumours and its clinical significance (review). Mol Clin Oncol. 2022;17(6):161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kawaguchi T, Sho M, Tojo T, Yamato I, Nomi T, Hotta K, et al. Clinical significance of prostate stem cell antigen expression in non-small cell lung cancer. Jpn J Clin Oncol. 2010;40(4):319–26.

    Article  PubMed  Google Scholar 

  25. Wang A, Lv T, Song Y. Tandem CAR-T cells targeting MUC1 and PSCA combined with anti-PD-1 antibody exhibit potent preclinical activity against non-small cell lung cancer. Cell Immunol. 2023;391–392:104760.

    Article  CAS  PubMed  Google Scholar 

  26. Decary S, Berne PF, Nicolazzi C, Lefebvre AM, Dabdoubi T, Cameron B, et al. Preclinical activity of SAR408701: a novel anti-CEACAM5-maytansinoid antibody-drug conjugate for the treatment of CEACAM5-positive epithelial tumors. Clin Cancer Res. 2020;26(24):6589–99.

    Article  CAS  PubMed  Google Scholar 

  27. Kim YJ, Li W, Zhelev DV, Mellors JW, Dimitrov DS, Baek DS. Chimeric antigen receptor-T cells are effective against CEACAM5 expressing non-small cell lung cancer cells resistant to antibody-drug conjugates. Front Oncol. 2023;13:1124039. https://doi.org/10.3389/fonc.2023.1124039/full.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu M, Wang X, Li W, Yu X, Flores-Villanueva P, Xu-Monette ZY, et al. Targeting PD-L1 in non-small cell lung cancer using CAR T cells. Oncogenesis. 2020;9(8):72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee YH, Martin-Orozco N, Zheng P, Li J, Zhang P, Tan H, et al. Inhibition of the B7–H3 immune checkpoint limits tumor growth by enhancing cytotoxic lymphocyte function. Cell Res. 2017;27(8):1034–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu J, Yang S, Cao B, Zhou G, Zhang F, Wang Y, et al. Targeting B7–H3 via chimeric antigen receptor T cells and bispecific killer cell engagers augments antitumor response of cytotoxic lymphocytes. J Hematol Oncol. 2021;14(1):21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Adusumilli PS, Zauderer MG, Rivière I, Solomon SB, Rusch VW, O’Cearbhaill RE, et al. A phase I trial of regional mesothelin-targeted CAR T-cell therapy in patients with malignant pleural disease, in combination with the anti–PD-1 agent pembrolizumab. Cancer Discov. 2021;11(11):2748–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Specht JM, Lee S, Turtle CJ, Berger C, Baladrishnan A, Srivastava S, et al. Abstract CT131: a phase I study of adoptive immunotherapy for advanced ROR1+ malignancies with defined subsets of autologous T cells expressing a ROR1-specific chimeric antigen receptor (ROR1-CAR). Cancer Res. 2018;78(13_Supplement):CT131.

    Article  Google Scholar 

  33. Srivastava S, Furlan SN, Jaeger-Ruckstuhl CA, Sarvothama M, Berger C, Smythe KS, et al. Immunogenic chemotherapy enhances recruitment of CAR-T cells to lung tumors and improves antitumor efficacy when combined with checkpoint blockade. Cancer Cell. 2021;39(2):193.

    Article  CAS  PubMed  Google Scholar 

  34. Chen R, Khatri P, Mazur PK, Polin M, Zheng Y, Vaka D, et al. A meta-analysis of lung cancer gene expression identifies PTK7 as a survival gene in lung adenocarcinoma. Cancer Res. 2014;74(10):2892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jie Y, Liu G, Feng L, Li Y, E M, Wu L, et al. PTK7-targeting CAR T-cells for the treatment of lung cancer and other malignancies. Front Immunol. 2021;12:665970. https://doi.org/10.3389/fimmu.2021.665970/full.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Borggrefe T, Oswald F. The Notch signaling pathway: transcriptional regulation at Notch target genes. Cell Mol Life Sci. 2009;66(10):1631–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lim JS, Ibaseta A, Fischer MM, Cancilla B, O’Young G, Cristea S, et al. Intratumoural heterogeneity generated by Notch signalling promotes small-cell lung cancer. Nature. 2017;545(7654):360–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tanaka K, Isse K, Fujihira T, Takenoyama M, Saunders L, Bheddah S, et al. Prevalence of Delta-like protein 3 expression in patients with small cell lung cancer. Lung Cancer. 2018;115:116–20.

    Article  PubMed  Google Scholar 

  39. Byers LA, Chiappori A, Smit MAD. Phase 1 study of AMG 119, a chimeric antigen receptor (CAR) T cell therapy targeting DLL3, in patients with relapsed/refractory small cell lung cancer (SCLC). J Clin Oncol. 2019. https://doi.org/10.1200/JCO.2019.37.15_suppl.TPS8576.

    Article  PubMed  Google Scholar 

  40. Byers L, Heymach J, Gibbons D, Zhang J, Chiappori A, Rasmussen E, et al. A phase 1 study of AMG 119, a DLL3-targeting, chimeric antigen receptor (CAR) T cell therapy, in relapsed/refractory small cell lung cancer (SCLC). J Immunother Cancer. 2022;10(2):697.

    Google Scholar 

  41. Rudin CM, Reck M, Johnson ML, Blackhall F, Hann CL, Yang JCH, et al. Emerging therapies targeting the delta-like ligand 3 (DLL3) in small cell lung cancer. J Hematol Oncol. 2023;16:66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sarvi S, Mackinnon AC, Avlonitis N, Bradley M, Rintoul RC, Rassl DM, et al. CD133+ cancer stem-like cells in small cell lung cancer are highly tumorigenic and chemoresistant but sensitive to a novel neuropeptide antagonist. Cancer Res. 2014;74(5):1554.

    Article  CAS  PubMed  Google Scholar 

  43. Taromi S, Firat E, Simonis A, Braun LM, Apostolova P, Elze M, et al. Enhanced AC133-specific CAR T cell therapy induces durable remissions in mice with metastatic small cell lung cancer. Cancer Lett. 2022;538:215697.

    Article  CAS  PubMed  Google Scholar 

  44. Rossig C, Kailayangiri S, Jamitzky S, Altvater B. Carbohydrate targets for CAR T cells in solid childhood cancers. Front Oncol. 2018;8:513.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Yu J, Wu X, Yan J, Yu H, Xu L, Chi Z, et al. Anti-GD2/4–1BB chimeric antigen receptor T cell therapy for the treatment of Chinese melanoma patients. J Hematol Oncol. 2018;11(1):1.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Reppel L, Tsahouridis O, Akulian J, Davis IJ, Lee H, Fucà G, et al. Targeting disialoganglioside GD2 with chimeric antigen receptor-redirected T cells in lung cancer. J Immunother Cancer. 2022;10(1):e003897.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Schwendenwein A, Megyesfalvi Z, Barany N, Valko Z, Bugyik E, Lang C, et al. Molecular profiles of small cell lung cancer subtypes: therapeutic implications. Mol Therapy Oncolytics. 2021;20:470–83.

    Article  CAS  Google Scholar 

  48. Zhang B, Yang Y, Stewart CA, Ramkumar K, Wang R, Cardnell R, et al. Abstract 3196: Subtype-specific targeting of cell surfaceome with CAR T therapies in small cell lung cancer. Cancer Res. 2023;83(7_Supplement):3196–3196.

    Article  Google Scholar 

  49. Ordóñez NG. Application of mesothelin immunostaining in tumor diagnosis. Am J Surg Pathol. 2003;27(11):1418.

    Article  PubMed  Google Scholar 

  50. Morello A, Sadelain M, Adusumilli PS. Mesothelin-targeted CARs: driving T cells to solid Tumors. Cancer Discov. 2016;6:133–46.

    Article  CAS  PubMed  Google Scholar 

  51. Haas AR, Tanyi JL, O’Hara MH, Gladney WL, Lacey SF, Torigian DA, et al. Phase I study of lentiviral-transduced chimeric antigen receptor-modified T cells recognizing mesothelin in advanced solid cancers. Mol Ther. 2019;27(11):1919–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Petrausch U, Schuberth PC, Hagedorn C, Soltermann A, Tomaszek S, Stahel R, et al. Re-directed T cells for the treatment of fibroblast activation protein (FAP)-positive malignant pleural mesothelioma (FAPME-1). BMC Cancer. 2012;12:615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hiltbrunner S, Britschgi C, Schuberth P, Bankel L, Nguyen-Kim TDL, Gulati P, et al. Local delivery of CAR T cells targeting fibroblast activation protein is safe in patients with pleural mesothelioma: first report of FAPME, a phase I clinical trial. Ann Oncol. 2021;32:120–1.

    Article  CAS  PubMed  Google Scholar 

  54. Chintala NK, Restle D, Quach H, Saini J, Bellis R, Offin M, et al. CAR T-cell therapy for pleural mesothelioma: Rationale, preclinical development, and clinical trials. Lung Cancer. 2021;157:48–59.

    Article  CAS  PubMed  Google Scholar 

  55. Klampatsa A, Achkova DY, Davies DM, Parente-Pereira AC, Woodman N, Rosekilly J, et al. Intracavitary ‘T4 immunotherapy’ of malignant mesothelioma using pan-ErbB re-targeted CAR T-cells. Cancer Lett. 2017;393:52–9.

    Article  CAS  PubMed  Google Scholar 

  56. Beard RE, Zheng Z, Lagisetty KH, Burns WR, Tran E, Hewitt SM, et al. Multiple chimeric antigen receptors successfully target chondroitin sulfate proteoglycan 4 in several different cancer histologies and cancer stem cells. J Immunother Cancer. 2014;2(1):25.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Monberg TJ, Borch TH, Svane IM, Donia M. TIL therapy: facts and hopes. Clin Cancer Res. 2023;29(17):3275–83.

    Article  CAS  PubMed  Google Scholar 

  58. Rohaan MW, Borch TH, van den Berg JH, Met Ö, Kessels R, Geukes Foppen MH, et al. Tumor-infiltrating lymphocyte therapy or ipilimumab in advanced melanoma. N Engl J Med. 2022;387(23):2113–25.

    Article  CAS  PubMed  Google Scholar 

  59. Rolfo C, Mack PC, Scagliotti GV, Baas P, Barlesi F, Bivona TG, et al. Liquid biopsy for advanced non-small cell lung cancer (NSCLC): a statement paper from the IASLC. J Thorac Oncol. 2018;13(9):1248–68.

    Article  PubMed  Google Scholar 

  60. Gueguen P, Metoikidou C, Dupic T, Lawand M, Goudot C, Baulande S, et al. Contribution of resident and circulating precursors to tumor-infiltrating CD8+ T cell populations in lung cancer. Sci Immunol. 2021;6(55):eabd5778.

    Article  CAS  PubMed  Google Scholar 

  61. Coman MM, Pusztai L, Hooley R, Andreveja L, Kim L, Joshi N, et al. Core needle biopsies as an alternative source for ex vivo expanded TIL for adoptive cell therapy in triple-negative breast cancer. J Immunother. 2024;47(2):49–53.

    Article  CAS  PubMed  Google Scholar 

  62. Simoni Y, Becht E, Fehlings M, Loh CY, Koo SL, Teng KWW, et al. Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature. 2018;557(7706):575–9.

    Article  CAS  PubMed  Google Scholar 

  63. Kradin RL, Boyle LA, Preffer FI, Callahan RJ, Barlai-Kovach M, Strauss HW, et al. Tumor-derived interleukin-2-dependent lymphocytes in adoptive immunotherapy of lung cancer. Cancer Immunol Immunother. 1987;24(1):76–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Creelan BC, Wang C, Teer JK, Toloza EM, Yao J, Kim S, et al. Tumor-infiltrating lymphocyte treatment for anti-PD-1-resistant metastatic lung cancer: a phase 1 trial. Nat Med. 2021;27(8):1410–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Schoenfeld AJ, Lee SM, DogerdeSpeville B, Gettinger SN, Hafliger S, Sukari A, et al. Lifileucel, an autologous tumor-infiltrating lymphocyte monotherapy, in patients with advanced non-small cell lung cancer resistant to immune checkpoint inhibitors. Cancer Discov. 2024;14(8):1389.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Shirasawa M, Yoshida T, Shiraishi K, Takigami A, Takayanagi D, Imabayashi T, et al. Identification of inflamed-phenotype of small cell lung cancer leading to the efficacy of anti-PD-L1 antibody and chemotherapy. Lung Cancer. 2023;1:179.

    Google Scholar 

  67. Minnema-Luiting J, Vroman H, Aerts J, Cornelissen R. Heterogeneity in immune cell content in malignant pleural mesothelioma. Int J Mol Sci. 2018;19(4):1041.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Van Der Merwe PA, Dushek O. Mechanisms for T cell receptor triggering. Nat Rev Immunol. 2011;11(1):47–55.

    Article  PubMed  Google Scholar 

  69. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419.

    Article  PubMed  Google Scholar 

  70. Harris DT, Hager MV, Smith SN, Cai Q, Stone JD, Kruger P, et al. Comparison of T cell activities mediated by human TCRs and CARs that use the same recognition domains. J Immunol. 2018;200(3):1088–100.

    Article  CAS  PubMed  Google Scholar 

  71. Salter AI, Rajan A, Kennedy JJ, Ivey RG, Shelby SA, Leung I, et al. Comparative analysis of TCR and CAR signaling informs CAR designs with superior antigen sensitivity and in vivo function. Sci Signal. 2021;14(697):eabe2606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chen KY, Liu J, Ren EC. Structural and functional distinctiveness of HLA-A2 allelic variants. Immunol Res. 2012;53(1–3):182–90.

    Article  CAS  PubMed  Google Scholar 

  73. Blumenschein GR, Devarakonda S, Johnson M, Moreno V, Gainor J, Edelman MJ, et al. Phase I clinical trial evaluating the safety and efficacy of ADP-A2M10 SPEAR T cells in patients with MAGE-A10+ advanced non-small cell lung cancer. J Immunother Cancer. 2022;10(1):e003581.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kim SH, Lee S, Lee CH, Lee MK, Kim YD, Shin DH, et al. Expression of cancer-testis antigens MAGE-A3/6 and NY-ESO-1 in non-small-cell lung carcinomas and their relationship with immune cell infiltration. Lung. 2009;187(6):401–11.

    Article  CAS  PubMed  Google Scholar 

  75. Gjerstorff MF, Pøhl M, Olsen KE, Ditzel HJ. Analysis of GAGE, NY-ESO-1 and SP17 cancer/testis antigen expression in early stage non-small cell lung carcinoma. BMC Cancer. 2013;8:13.

    Google Scholar 

  76. Xia Y, Tian X, Wang J, Qiao D, Liu X, Xiao L, et al. Treatment of metastatic non-small cell lung cancer with NY-ESO-1 specific TCR engineered-T cells in a phase I clinical trial: a case report. Oncol Lett. 2018;16(6):6998–7007.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Leidner R, Sanjuan Silva N, Huang H, Sprott D, Zheng C, Shih YP, et al. Neoantigen T-cell receptor gene therapy in pancreatic cancer. N Engl J Med. 2022;386(22):2112–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tsimberidou AM, Guenther K, Andersson BS, Mendrzyk R, Alpert A, Wagner C, et al. Feasibility and safety of personalized, multi-target, adoptive cell therapy (IMA101): first-in-human clinical trial in patients with advanced metastatic cancer. Cancer Immunol Res. 2023;11(7):925–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kim YR, Kim KU, Lee JH, Kim DW, Chung JH, Kim YD, et al. Cancer testis antigen, NOL4, is an immunogenic antigen specifically expressed in small-cell lung cancer. Curr Oncol. 2021;28(3):1927–37.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Cedrés S, Montero MA, Zamora E, Martínez A, Martínez P, Fariñas L, et al. Expression of Wilms’ tumor gene (WT1) is associated with survival in malignant pleural mesothelioma. Clin Transl Oncol. 2014;16(9):776–82.

    Article  PubMed  Google Scholar 

  81. Rejeski K, Perez A, Sesques P, Hoster E, Berger C, Jentzsch L, et al. CAR-HEMATOTOX: a model for CAR T-cell–related hematologic toxicity in relapsed/refractory large B-cell lymphoma. Blood. 2021;138(24):2499–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Brudno JN, Kochenderfer JN. Recent advances in CAR T-cell toxicity: mechanisms, manifestations and management. Blood Rev. 2019;34:45–55.

    Article  CAS  PubMed  Google Scholar 

  83. Choe JH, Watchmaker PB, Simic MS, Gilbert RD, Li AW, Krasnow NA, et al. SynNotch-CAR T cells overcome challenges of specificity, heterogeneity, and persistence in treating glioblastoma. Sci Transl Med. 2021;13(591):eabe7378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Fedorov VD, Themeli M, Sadelain M. PD-1– and CTLA-4–based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses. Sci Transl Med. 2013;5(215):215ra172.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Ninovasquez J. A powerful combination: the use of positional scanning libraries and biometrical analysis to identify cross-reactive T cell epitopes. Mol Immunol. 2004;40(14–15):1063–74.

    Article  CAS  PubMed  Google Scholar 

  86. Li N, Yuan J, Tian W, Meng L, Liu Y. T-cell receptor repertoire analysis for the diagnosis and treatment of solid tumor: a methodology and clinical applications. Cancer Commun. 2020;40(10):473–83.

    Article  Google Scholar 

  87. Sahillioglu AC, Toebes M, Apriamashvili G, Gomez R, Schumacher TN. CRASH-IT switch enables reversible and dose-dependent control of TCR and CAR T-cell function. Cancer Immunol Res. 2021;9(9):999–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Savanur MA, Weinstein-Marom H, Gross G. Implementing logic gates for safer immunotherapy of cancer. Front Immunol. 2021;4:12.

    Google Scholar 

  89. Ellebaek E, Iversen TZ, Junker N, Donia M, Engell-Noerregaard L, Met Ö, et al. Adoptive cell therapy with autologous tumor infiltrating lymphocytes and low-dose Interleukin-2 in metastatic melanoma patients. J Transl Med. 2012;10(1):169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chamberlain CA, Bennett EP, Kverneland AH, Svane IM, Donia M, Met Ö. Highly efficient PD-1-targeted CRISPR-Cas9 for tumor-infiltrating lymphocyte-based adoptive T cell therapy. Mol Ther Oncolytics. 2022;24:417–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Chesney J, Wise-Draper T, Sarnaik AA, Graf Finckenstein F, Hari P, Jagasia M, et al. 883TiP A phase I/II open-label study (IOV-GM1-201) of TALEN-mediated PD-1 inactivated autologous tumor-infiltrating lymphocytes (TIL; IOV-4001) in patients with advanced melanoma and NSCLC. Ann Oncol. 2022;33:S952.

    Article  Google Scholar 

  92. Kazemi MH, Sadri M, Najafi A, Rahimi A, Baghernejadan Z, Khorramdelazad H, et al. Tumor-infiltrating lymphocytes for treatment of solid tumors: it takes two to tango? Front Immunol. 2022;28:13.

    Google Scholar 

  93. Kirtane K, Elmariah H, Chung CH, Abate-Daga D. Adoptive cellular therapy in solid tumor malignancies: review of the literature and challenges ahead. J Immunother Cancer. 2021;9(7): e002723.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Baulu E, Gardet C, Chuvin N, Depil S. TCR-engineered T cell therapy in solid tumors: state of the art and perspectives. Sci Adv. 2023;9(7):eadf3700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Imbimbo M, Wetterwald L, Friedlaender A, Parikh K, Addeo A. Cellular therapy in NSCLC: between myth and reality. Curr Oncol Rep. 2023;25(10):1161–74.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Canova S, Trevisan B, Abbate MI, Colonese F, Sala L, Baggi A, et al. Novel therapeutic options for small cell lung cancer. Curr Oncol Rep. 2023;25(11):1277–94.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Zhang Y, Tacheva-Grigorova SK, Sutton J, Melton Z, Mak YSL, Lay C, et al. Allogeneic CAR T cells targeting DLL3 are efficacious and safe in preclinical models of small cell lung cancer. Clin Cancer Res. 2023;29(5):971–85.

    Article  PubMed  Google Scholar 

  98. Drummond MF, Neumann PJ, Sullivan SD, Fricke FU, Tunis S, Dabbous O, et al. Analytic considerations in applying a general economic evaluation reference case to gene therapy. Value Health. 2019;22(6):661–8.

    Article  PubMed  Google Scholar 

  99. Hiltensperger M, Krackhardt AM. Current and future concepts for the generation and application of genetically engineered CAR-T and TCR-T cells. Front Immunol. 2023;6:14.

    Google Scholar 

  100. Whittington MD, McQueen RB, Campbell JD. Valuing chimeric antigen receptor T-Cell therapy: current evidence, uncertainties, and payment implications. J Clin Oncol. 2020;38(4):359–66.

    Article  PubMed  Google Scholar 

  101. Chacim S, Monjardino T, Cunha JL, Medeiros P, Redondo P, Bento MJ, et al. Costs, effectiveness, and safety associated with chimeric antigen receptor (CAR) T-cell therapy: results from a comprehensive cancer center. PLoS ONE. 2022;17(12): e0278950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Cavallo MC, Cavazza M, Bonifazi F, Casadei B, Cutini I, Tonietti B, et al. Cost of implementing CAR-T activity and managing CAR-T patients: an exploratory study. BMC Health Serv Res. 2024;24(1):121.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Gajra A, Zalenski A, Sannareddy A, Jeune-Smith Y, Kapinos K, Kansagra A. Barriers to chimeric antigen receptor T-Cell (CAR-T) therapies in clinical practice. Pharmaceut Med. 2022;36(3):163–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Abou-el-Enein M, Elsallab M, Feldman SA, Fesnak AD, Heslop HE, Marks P, et al. Scalable manufacturing of CAR T cells for cancer immunotherapy. Blood Cancer Discov. 2021;2(5):408–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. ten Ham RMT, Rohaan MW, Jedema I, Kessels R, Stegeman W, Scheepmaker W, et al. Cost-effectiveness of treating advanced melanoma with tumor-infiltrating lymphocytes based on an international randomized phase 3 clinical trial. J Immunother Cancer. 2024;12(3): e008372.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Retèl VP, Steuten LMG, Geukes Foppen MH, Mewes JC, Lindenberg MA, Haanen JBAG, et al. Early cost-effectiveness of tumor infiltrating lymphocytes (TIL) for second line treatment in advanced melanoma: a model-based economic evaluation. BMC Cancer. 2018;18(1):895.

    Article  PubMed  PubMed Central  Google Scholar 

  107. National Cancer Institute. https://www.cancer.gov/news-events/cancer-currents-blog/2024/fda-amtagvi-til-therapy-melanoma. 2024. FDA Approves Amtagvi, the First TIL Therapy for Melanoma.

  108. Reardon S. First cell therapy for solid tumours heads to the clinic: what it means for cancer treatment. Nature. 2024. https://doi.org/10.1038/d41586-024-00673-w.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yago Garitaonaindia or Mariano Provencio.

Ethics declarations

Conflict of interest

Authors declare no competing interests with this publication.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garitaonaindia, Y., Martínez-Cutillas, M., Uribarren, M. et al. Adoptive cell therapies in thoracic malignancies: a comprehensive review. Clin Transl Oncol (2025). https://doi.org/10.1007/s12094-024-03834-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12094-024-03834-5

Keywords