Skip to main content

Advertisement

Log in

The crosstalk between intestinal bacterial microbiota and immune cells in colorectal cancer progression

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Different types of cells that are involved in tumor immunity play a significant part in antitumor therapy. The intestinal microbiota consist of the trillions of diverse microorganisms that inhabit the gastrointestinal tract. Recently, much emphasis has been paid to the link between these symbionts and colorectal cancer (CRC). This association might be anything from oncogenesis and cancer development to resistance or susceptibility to chemotherapeutic medicines. Cancer patients have a significantly different microbial composition in their guts compared to healthy persons. The microbiome may play a role in the development and development of cancer through the modulation of tumor immunosurveillance, as shown by these studies; however, the specific processes underlying this role are still poorly understood. This review focuses on the relationship between the intestinal bacterial microbiota and immune cells to determine how the commensal microbiome influences the initiation and development of CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

It is not applicable.

Abbreviations

CRC:

Colorectal cancer

CAC:

Colitis-associated colorectal cancer

DNA:

Deoxyribonucleic acid

GF mice:

Germ-free mice

Foxp3:

Forkhead box P3

TME:

Tumor microenvironment

TNM:

Tumor, lymph node, metastasis

HPV:

Human papillomavirus

NF-κB:

Nuclear factor kappa B

JAK/STAT3:

Janus kinase-signal transducer and activator of transcription 3

SCFAs:

Short-chain fatty acids

APCs:

Antigen-presenting cells

FMT:

Fecal microbiota transplantation

IgA:

Immunoglobulin A

RANKL:

Receptor activator of nuclear factor kappa beta ligand

CNS:

Central nervous system

NK cell:

Natural killer cell

ICAM:

Intercellular adhesion molecule

LFA-1:

Lymphocyte function-associated antigen 1

VCAM:

Vascular cell adhesion molecule

DC:

Dendritic cells

LAB:

Lactic acid bacteria

TIGIT:

T cell immunoglobulin and ITIM domain

MDSC:

Myeloid-derived suppressor cells

SFB:

Segmented filamentous bacteria

RORγ:

Retinoic acid receptor-related orphan receptor γ

TAM:

Tumor associated macrophage

TLR:

Toll-like receptor

IDO:

Indoleamine-pyrrole 2,3-dioxygenase

COX:

Cyclooxygenase

PGE2:

Prostaglandin E2

NOS2:

Nitric oxide synthase 2

Arg1:

Arginase -1

FU:

Fluorouracil

ICB:

Immune checkpoint blockers

ODN:

Oligodeoxynucleotide

FadA:

Fusobacterium adhesin A

Fap2:

Fibroblast activation protein 2

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

    Article  PubMed  Google Scholar 

  2. Brenner H, Stock C, Hoffmeister M. Effect of screening sigmoidoscopy and screening colonoscopy on colorectal cancer incidence and mortality: systematic review and meta-analysis of randomised controlled trials and observational studies. BMJ. 2014;348:g2467.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Vafaei S, Saeednejad Zanjani L, Habibi Shams Z, Naseri M, Fattahi F, Gheytanchi E, et al. Low expression of Talin1 is associated with advanced pathological features in colorectal cancer patients. Sci Rep. 2020;10(1):1–18.

    Article  Google Scholar 

  4. Siegel R, Miller K, Jemal A. Cancer statistics, 2020. CA Cancer J Clin Am Cancer Soc. 2020;70:7–30.

    Article  Google Scholar 

  5. Mantovani A, Sica A. Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol. 2010;22(2):231–7.

    Article  CAS  PubMed  Google Scholar 

  6. Galon J, Mlecnik B, Bindea G, Angell HK, Berger A, Lagorce C, et al. Towards the introduction of the ‘Immunoscore’in the classification of malignant tumours. J Pathol. 2014;232(2):199–209.

    Article  CAS  PubMed  Google Scholar 

  7. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  PubMed  Google Scholar 

  8. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454(7203):436–44.

    Article  CAS  PubMed  Google Scholar 

  9. Pagès F, Mlecnik B, Marliot F, Bindea G, Ou F-S, Bifulco C, et al. International validation of the consensus immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet. 2018;391(10135):2128–39.

    Article  PubMed  Google Scholar 

  10. Garrett WS. Cancer and the microbiota. Science. 2015;348(6230):80–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Matijašić M, Meštrović T, Paljetak H, Perić M, Barešić A, Verbanac D. Gut microbiota beyond bacteria-mycobiome, virome, archaeome, and eukaryotic parasites in IBD. Int J Mol Sci. 2020;21(8):2668.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nasr R, Shamseddine A, Mukherji D, Nassar F, Temraz S. The crosstalk between microbiome and immune response in gastric cancer. Int J Mol Sci. 2020;21(18):6586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hou Q, Huang J, Xiong X, Guo Y, Zhang B. Role of nutrient-sensing receptor GPRC6A in regulating colonic group 3 innate lymphoid cells and inflamed mucosal healing. J Crohns Colitis. 2022;20:1–13.

    Google Scholar 

  14. Thaiss CA, Zmora N, Levy M, Elinav E. The microbiome and innate immunity. Nature. 2016;535(7610):65–74.

    Article  CAS  PubMed  Google Scholar 

  15. Meng C, Bai C, Brown TD, Hood LE, Tian Q. Human gut microbiota and gastrointestinal cancer. Genomics Proteomics Bioinformatics. 2018;16(1):33–49.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lei J, Dong Y, Hou Q, He Y, Lai Y, Liao C, et al. Intestinal microbiota regulate certain meat quality parameters in chicken. Front Nutr. 2022;9:747705.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Pham F, Moinard-Butot F, Coutzac C, Chaput N. Cancer and immunotherapy: a role for microbiota composition. Eur J Cancer. 2021;155:145–54.

    Article  CAS  PubMed  Google Scholar 

  18. Yu Q, Jia A, Li Y, Bi Y, Liu G. Microbiota regulate the development and function of the immune cells. Int Rev Immunol. 2018;37(2):79–89.

    Article  CAS  PubMed  Google Scholar 

  19. Wesemann DR, Portuguese AJ, Meyers RM, Gallagher MP, Cluff-Jones K, Magee JM, et al. Microbial colonization influences early B-lineage development in the gut lamina propria. Nature. 2013;501(7465):112–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lathrop SK, Bloom SM, Rao SM, Nutsch K, Lio C-W, Santacruz N, et al. Peripheral education of the immune system by colonic commensal microbiota. Nature. 2011;478(7368):250–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zitvogel L, Ma Y, Raoult D, Kroemer G, Gajewski TF. The microbiome in cancer immunotherapy: diagnostic tools and therapeutic strategies. Science. 2018;359(6382):1366–70.

    Article  CAS  PubMed  Google Scholar 

  22. Sánchez-Alcoholado L, Ramos-Molina B, Otero A, Laborda-Illanes A, Ordóñez R, Medina JA, et al. The role of the gut microbiome in colorectal cancer development and therapy response. Cancers. 2020;12(6):1406.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yu J, Feng Q, Wong SH, Zhang D, Yi Liang Q, Qin Y, et al. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut. 2017;66(1):70–8.

    Article  CAS  PubMed  Google Scholar 

  24. Feng Q, Liang S, Jia H, Stadlmayr A, Tang L, Lan Z, et al. Gut microbiome development along the colorectal adenoma–carcinoma sequence. Nat Commun. 2015;6(1):1–13.

    Article  Google Scholar 

  25. Xu S, Tao H, Cao W, Cao L, Lin Y, Zhao S-M, et al. Ketogenic diets inhibit mitochondrial biogenesis and induce cardiac fibrosis. Signal Transduct Target Ther. 2021;6(1):1–13.

    Google Scholar 

  26. Vafaei S, Mirnejad R, Amirmozafari N. Determining the patterns of antimicrobial susceptibility and the distribution of blaCTX-M genes in strains of Acinetobacter Baumannii isolated from clinical samples. J Isfahan Med Sch. 2013;31(252):1443–51.

    Google Scholar 

  27. Gopalakrishnan V, Helmink BA, Spencer CN, Reuben A, Wargo JA. The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell. 2018;33(4):570–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. McQuade JL, Daniel CR, Helmink BA, Wargo JA. Modulating the microbiome to improve therapeutic response in cancer. Lancet Oncol. 2019;20(2):e77–91.

    Article  PubMed  Google Scholar 

  29. Scott AJ, Alexander JL, Merrifield CA, Cunningham D, Jobin C, Brown R, et al. International cancer microbiome consortium consensus statement on the role of the human microbiome in carcinogenesis. Gut. 2019;68(9):1624–32.

    Article  CAS  PubMed  Google Scholar 

  30. Montalban-Arques A, Scharl M. Intestinal microbiota and colorectal carcinoma: Implications for pathogenesis, diagnosis, and therapy. EBioMedicine. 2019;48:648–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Saus E, Iraola-Guzmán S, Willis JR, Brunet-Vega A, Gabaldón T. Microbiome and colorectal cancer: roles in carcinogenesis and clinical potential. Mol Aspects Med. 2019;69:93–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lai W-F, Huang E, Lui K-H. Alginate-based complex fibers with the Janus morphology for controlled release of co-delivered drugs. Asian J Pharm Sci. 2021;16(1):77–85.

    Article  PubMed  Google Scholar 

  33. Wong SH, Yu J. Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nat Rev Gastroenterol Hepatol. 2019;16(11):690–704.

    Article  CAS  PubMed  Google Scholar 

  34. Hanus M, Parada-Venegas D, Landskron G, Wielandt AM, Hurtado C, Alvarez K, et al. Immune system, microbiota, and microbial metabolites: the unresolved triad in colorectal cancer microenvironment. Front Immunol. 2021;12: 612826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vafaei S, Fattahi F, Sahlolbei M, Kiani J, Yazdanpanah A, Madjd Z. Dynamic signature of tRNA-derived small RNAs in cancer pathogenesis as a promising valuable approach. Crit Rev Eukaryot Gene Expr. 2020;30(5):391–410.

    Article  PubMed  Google Scholar 

  36. Ranjbar M, Salehi R, Haghjooy Javanmard S, Rafiee L, Faraji H, Ferns GA, et al. The dysbiosis signature of Fusobacterium nucleatum in colorectal cancer-cause or consequences? A systematic review. Cancer Cell Int. 2021;21(1):1–24.

    Article  Google Scholar 

  37. Fontana E, Eason K, Cervantes A, Salazar R, Sadanandam A. Context matters—consensus molecular subtypes of colorectal cancer as biomarkers for clinical trials. Ann Oncol. 2019;30(4):520–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Grenham S, Clarke G, Cryan JF, Dinan TG. Brain–gut–microbe communication in health and disease. Front Physiol. 2011;2:94.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ternes D, Karta J, Tsenkova M, Wilmes P, Haan S, Letellier E. Microbiome in colorectal cancer: how to get from meta-omics to mechanism? Trends Microbiol. 2020;28(5):401–23.

    Article  CAS  PubMed  Google Scholar 

  40. Cenit MC, Sanz Y, Codoñer-Franch P. Influence of gut microbiota on neuropsychiatric disorders. World J Gastroenterol. 2017;23(30):5486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tajik N, Frech M, Schulz O, Schälter F, Lucas S, Azizov V, et al. Targeting zonulin and intestinal epithelial barrier function to prevent onset of arthritis. Nat Commun. 2020;11(1):1–14.

    Article  Google Scholar 

  42. Song K, Wu D. Shared decision-making in the management of patients with inflammatory bowel disease. World J Gastroenterol. 2022;28(26):3092–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zou M, Yang Z, Fan Y, Gong L, Han Z, Ji L, et al. Gut microbiota on admission as predictive biomarker for acute necrotizing pancreatitis. Front Immunol. 2022;13:988326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Panebianco C, Andriulli A, Pazienza V. Pharmacomicrobiomics: exploiting the drug-microbiota interactions in anticancer therapies. Microbiome. 2018;6(1):1–13.

    Article  Google Scholar 

  45. Pan Z-Y, Zhong H-J, Huang D-N, Wu L-H, He X-X. Beneficial effects of repeated washed microbiota transplantation in children with autism. Front Pediatr. 2022;971:928785.

    Article  Google Scholar 

  46. Dzutsev A, Badger JH, Perez-Chanona E, Roy S, Salcedo R, Smith CK, et al. Microbes and cancer. Annu Rev Immunol. 2017;35(1):199–228.

    Article  CAS  PubMed  Google Scholar 

  47. Wang D, Zhao R, Qu Y-Y, Mei X-Y, Zhang X, Zhou Q, et al. Colonic lysine homocysteinylation induced by high-fat diet suppresses DNA damage repair. Cell Rep. 2018;25(2):398-412 e6.

    Article  CAS  PubMed  Google Scholar 

  48. Li Y, Yao C-F, Xu F-J, Qu Y-Y, Li J-T, Lin Y, et al. APC/CCDH1 synchronizes ribose-5-phosphate levels and DNA synthesis to cell cycle progression. Nat Commun. 2019;10(1):1–16.

    Google Scholar 

  49. Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N, Weingarten RA, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science. 2013;342(6161):967–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Honda K, Littman DR. The microbiota in adaptive immune homeostasis and disease. Nature. 2016;535(7610):75–84.

    Article  CAS  PubMed  Google Scholar 

  51. Tsuei J, Chau T, Mills D, Wan Y-JY. Bile acid dysregulation, gut dysbiosis, and gastrointestinal cancer. Exp Biol Med. 2014;239(11):1489–504.

    Article  Google Scholar 

  52. Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers. 2011;3(3):1377–97.

    Article  CAS  PubMed  Google Scholar 

  53. Qu Y-Y, Zhao R, Zhang H-L, Zhou Q, Xu F-J, Zhang X, et al. Inactivation of the AMPK–GATA3–ECHS1 pathway induces fatty acid synthesis that promotes clear cell renal cell carcinoma growth. Can Res. 2020;80(2):319–33.

    Article  CAS  Google Scholar 

  54. Ge Y, Wang X, Guo Y, Yan J, Abuduwaili A, Aximujiang K, et al. Gut microbiota influence tumor development and Alter interactions with the human immune system. J Exp Clin Cancer Res. 2021;40(1):1–9.

    Google Scholar 

  55. Zhang J, Zhang F, Zhao C, Xu Q, Liang C, Yang Y, et al. Dysbiosis of the gut microbiome is associated with thyroid cancer and thyroid nodules and correlated with clinical index of thyroid function. Endocrine. 2019;64(3):564–74.

    Article  CAS  PubMed  Google Scholar 

  56. Janney A, Powrie F, Mann EH. Host–microbiota maladaptation in colorectal cancer. Nature. 2020;585(7826):509–17.

    Article  CAS  PubMed  Google Scholar 

  57. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-y M, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341(6145):569–73.

    Article  CAS  PubMed  Google Scholar 

  58. Cai K, Wang F, Lu J-Q, Shen A-N, Zhao S-M, Zang W-D, et al. Nicotinamide mononucleotide alleviates cardiomyopathy phenotypes caused by short-chain enoyl-CoA hydratase 1 deficiency. BasicTransl Sci. 2022;7(4):348–62.

    Google Scholar 

  59. Hegazy AN, West NR, Stubbington MJ, Wendt E, Suijker KI, Datsi A, et al. Circulating and tissue-resident CD4+ T cells with reactivity to intestinal microbiota are abundant in healthy individuals and function is altered during inflammation. Gastroenterology. 2017;153(5):1320-37 e16.

    Article  CAS  PubMed  Google Scholar 

  60. Miossec P, Kolls JK. Targeting IL-17 and TH17 cells in chronic inflammation. Nat Rev Drug Discov. 2012;11(10):763–76.

    Article  CAS  PubMed  Google Scholar 

  61. Omenetti S, Bussi C, Metidji A, Iseppon A, Lee S, Tolaini M, et al. The intestine harbors functionally distinct homeostatic tissue-resident and inflammatory Th17 cells. Immunity. 2019;51(1):77-89 e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Song X, Sun X, Oh SF, Wu M, Zhang Y, Zheng W, et al. Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis. Nature. 2020;577(7790):410–5.

    Article  CAS  PubMed  Google Scholar 

  63. Tanoue T, Morita S, Plichta DR, Skelly AN, Suda W, Sugiura Y, et al. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature. 2019;565(7741):600–5.

    Article  CAS  PubMed  Google Scholar 

  64. Peterson DA, McNulty NP, Guruge JL, Gordon JI. IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe. 2007;2(5):328–39.

    Article  CAS  PubMed  Google Scholar 

  65. Sterlin D, Fadlallah J, Adams O, Fieschi C, Parizot C, Dorgham K, et al. Human IgA binds a diverse array of commensal bacteria. J Exp Med. 2020;217(3):e20181635.

    Article  PubMed  Google Scholar 

  66. Sutherland DB, Suzuki K, Fagarasan S. Fostering of advanced mutualism with gut microbiota by Immunoglobulin A. Immunol Rev. 2016;270(1):20–31.

    Article  CAS  PubMed  Google Scholar 

  67. Kawamoto S, Maruya M, Kato LM, Suda W, Atarashi K, Doi Y, et al. Foxp3(+) T cells regulate immunoglobulin a selection and facilitate diversification of bacterial species responsible for immune homeostasis. Immunity. 2014;41(1):152–65.

    Article  CAS  PubMed  Google Scholar 

  68. Palm NW, de Zoete MR, Cullen TW, Barry NA, Stefanowski J, Hao L, et al. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell. 2014;158(5):1000–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shulzhenko N, Morgun A, Hsiao W, Battle M, Yao M, Gavrilova O, et al. Crosstalk between B lymphocytes, microbiota and the intestinal epithelium governs immunity versus metabolism in the gut. Nat Med. 2011;17(12):1585–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang X, Qu Y-Y, Liu L, Qiao Y-N, Geng H-R, Lin Y, et al. Homocysteine inhibits pro-insulin receptor cleavage and causes insulin resistance via protein cysteine-homocysteinylation. Cell Rep. 2021;37(2): 109821.

    Article  CAS  PubMed  Google Scholar 

  71. Nagashima K, Sawa S, Nitta T, Tsutsumi M, Okamura T, Penninger JM, et al. Identification of subepithelial mesenchymal cells that induce IgA and diversify gut microbiota. Nat Immunol. 2017;18(6):675–82.

    Article  CAS  PubMed  Google Scholar 

  72. Ramakrishna C, Kujawski M, Chu H, Li L, Mazmanian SK, Cantin EM. Bacteroides fragilis polysaccharide A induces IL-10 secreting B and T cells that prevent viral encephalitis. Nat Commun. 2019;10(1):1–13.

    Article  CAS  Google Scholar 

  73. Muller WA. Transendothelial migration: unifying principles from the endothelial perspective. Immunol Rev. 2016;273(1):61–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lee M, Kiefel H, LaJevic MD, Macauley MS, Kawashima H, O’Hara E, et al. Transcriptional programs of lymphoid tissue capillary and high endothelium reveal control mechanisms for lymphocyte homing. Nat Immunol. 2014;15(10):982–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Buffone A Jr, Anderson NR, Hammer DA. Migration against the direction of flow is LFA-1-dependent in human hematopoietic stem and progenitor cells. J Cell Sci. 2018;131(1):jcs205575.

    PubMed  PubMed Central  Google Scholar 

  76. Gensollen T, Iyer SS, Kasper DL, Blumberg RS. How colonization by microbiota in early life shapes the immune system. Science. 2016;352(6285):539–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bartizal KF, Salkowski C, Balish E, Pleasants JR. The effect of microbial flora, diet, and age on the tumoricidal activity of natural killer cells. J Leukoc Biol. 1984;36(6):739–50.

    Article  CAS  PubMed  Google Scholar 

  78. Ganal SC, Sanos SL, Kallfass C, Oberle K, Johner C, Kirschning C, et al. Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota. Immunity. 2012;37(1):171–86.

    Article  CAS  PubMed  Google Scholar 

  79. Moro K, Koyasu S. Innate lymphoid cells, possible interaction with microbiota. Semin Immunopathol. 2015;37(1):27–37.

    Article  CAS  PubMed  Google Scholar 

  80. Rizzello V, Bonaccorsi I, Dongarra ML, Fink LN, Ferlazzo G. Role of natural killer and dendritic cell crosstalk in immunomodulation by commensal bacteria probiotics. J Biomed Biotechnol. 2011;2011:1–10.

    Article  Google Scholar 

  81. Mima K, Nishihara R, Qian ZR, Cao Y, Sukawa Y, Nowak JA, et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut. 2016;65(12):1973–80.

    Article  CAS  PubMed  Google Scholar 

  82. Jin Y, Dong H, Xia L, Yang Y, Zhu Y, Shen Y, et al. The diversity of gut microbiome is associated with favorable responses to anti–programmed death 1 immunotherapy in Chinese patients with NSCLC. J Thorac Oncol. 2019;14(8):1378–89.

    Article  CAS  PubMed  Google Scholar 

  83. Rubio CA, Schmidt PT. Severe defects in the macrophage barrier to gut microflora in inflammatory bowel disease and colon cancer. Anticancer Res. 2018;38(7):3811–5.

    Article  CAS  PubMed  Google Scholar 

  84. Keku TO, Dulal S, Deveaux A, Jovov B, Han X. The gastrointestinal microbiota and colorectal cancer. Am J Physiol Gastrointest Liver Physiol. 2015;308(5):G351–63.

    Article  CAS  PubMed  Google Scholar 

  85. Derosa L, Routy B, Fidelle M, Iebba V, Alla L, Pasolli E, et al. Gut bacteria composition drives primary resistance to cancer immunotherapy in renal cell carcinoma patients. Eur Urol. 2020;78(2):195–206.

    Article  CAS  PubMed  Google Scholar 

  86. Lili L, Ye J. Characterization of gut microbiota in patients with primary hepatocellular carcinoma received immune checkpoint inhibitors: a Chinese population-based study. Medicine. 2020;99(37):e21788.

    Article  Google Scholar 

  87. Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews M, Karpinets T, et al. Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients. Science. 2018;359(6371):97–103.

    Article  CAS  PubMed  Google Scholar 

  88. Coutzac C, Jouniaux J-M, Paci A, Schmidt J, Mallardo D, Seck A, et al. Systemic short chain fatty acids limit antitumor effect of CTLA-4 blockade in hosts with cancer. Nat Commun. 2020;11(1):1–13.

    Article  Google Scholar 

  89. Baiden-Amissah RE, Tuyaerts S. Contribution of aging, obesity, and microbiota on tumor immunotherapy efficacy and toxicity. Int J Mol Sci. 2019;20(14):3586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wang F, Yin Q, Chen L, Davis MM. Bifidobacterium can mitigate intestinal immunopathology in the context of CTLA-4 blockade. Proc Natl Acad Sci. 2018;115(1):157–61.

    Article  CAS  PubMed  Google Scholar 

  91. Sun S, Luo L, Liang W, Yin Q, Guo J, Rush AM, et al. Bifidobacterium alters the gut microbiota and modulates the functional metabolism of T regulatory cells in the context of immune checkpoint blockade. Proc Natl Acad Sci. 2020;117(44):27509–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ricciuti B, Genova C, De Giglio A, Bassanelli M, Dal Bello MG, Metro G, et al. Impact of immune-related adverse events on survival in patients with advanced non-small cell lung cancer treated with nivolumab: long-term outcomes from a multi-institutional analysis. J Cancer Res Clin Oncol. 2019;145(2):479–85.

    Article  CAS  PubMed  Google Scholar 

  93. Naqash AR, Ricciuti B, Owen DH, Florou V, Toi Y, Cherry C, et al. Outcomes associated with immune-related adverse events in metastatic non-small cell lung cancer treated with nivolumab: a pooled exploratory analysis from a global cohort. Cancer Immunol Immunother. 2020;69(7):1177–87.

    Article  CAS  PubMed  Google Scholar 

  94. Verzoni E, Cartenì G, Cortesi E, Giannarelli D, De Giglio A, Sabbatini R, et al. Real-world efficacy and safety of nivolumab in previously-treated metastatic renal cell carcinoma, and association between immune-related adverse events and survival: the Italian expanded access program. J Immunother Cancer. 2019;7(1):1–9.

    Article  Google Scholar 

  95. Derosa L, Hellmann M, Spaziano M, Halpenny D, Fidelle M, Rizvi H, et al. Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small-cell lung cancer. Ann Oncol. 2018;29(6):1437–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Vivarelli S, Salemi R, Candido S, Falzone L, Santagati M, Stefani S, et al. Gut microbiota and cancer: from pathogenesis to therapy. Cancers. 2019;11(1):38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gao Y, Chen S, Vafaei S, Zhong X. Tumor-infiltrating immune cell signature predicts the prognosis and chemosensitivity of patients with pancreatic ductal adenocarcinoma. Front Oncol. 2020;10: 557638.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Ma W, Mao Q, Xia W, Dong G, Yu C, Jiang F. Gut microbiota shapes the efficiency of cancer therapy. Front Microbiol. 2019;10:1050.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Yu T, Guo F, Yu Y, Sun T, Ma D, Han J, et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell. 2017;170(3):548-63. e16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wang H, Gao Y, Vafaei S, Yu Q, Zhang J, Wang L. A chemoresistance lncRNA signature for recurrence risk stratification of colon cancer patients with chemotherapy. Mol Ther Nucl Acids. 2022;27:427–38.

    Article  CAS  Google Scholar 

  101. Crawford PA, Gordon JI. Microbial regulation of intestinal radiosensitivity. Proc Natl Acad Sci. 2005;102(37):13254–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Al-Dasooqi N, Bowen JM, Gibson RJ, Logan RM, Stringer AM, Keefe DM. Irinotecan-induced alterations in intestinal cell kinetics and extracellular matrix component expression in the dark agouti rat. Int J Exp Pathol. 2011;92(5):357–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Routy B, Le Chatelier E, Derosa L, Duong CP, Alou MT, Daillère R, et al. Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. Science. 2018;359(6371):91–7.

    Article  CAS  PubMed  Google Scholar 

  104. Matson V, Fessler J, Bao R, Chongsuwat T, Zha Y, Alegre M-L, et al. The commensal microbiome is associated with anti–PD-1 efficacy in metastatic melanoma patients. Science. 2018;359(6371):104–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Guiducci C, Vicari AP, Sangaletti S, Trinchieri G, Colombo MP. Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection. Can Res. 2005;65(8):3437–46.

    Article  CAS  Google Scholar 

  106. Wallace BD, Roberts AB, Pollet RM, Ingle JD, Biernat KA, Pellock SJ, et al. Structure and inhibition of microbiome β-glucuronidases essential to the alleviation of cancer drug toxicity. Chem Biol. 2015;22(9):1238–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Mager LF, Burkhard R, Pett N, Cooke NC, Brown K, Ramay H, et al. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science. 2020;369(6510):1481–9.

    Article  CAS  PubMed  Google Scholar 

  108. Huang C, Li M, Liu B, Zhu H, Dai Q, Fan X, et al. Relating gut microbiome and its modulating factors to immunotherapy in solid tumors: a systematic review. Front Oncol. 2021;11:760.

    Google Scholar 

  109. Temraz S, Nassar F, Nasr R, Charafeddine M, Mukherji D, Shamseddine A. Gut microbiome: a promising biomarker for immunotherapy in colorectal cancer. Int J Mol Sci. 2019;20(17):4155.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Zhang S, Yang Y, Weng W, Guo B, Cai G, Ma Y, et al. Fusobacterium nucleatum promotes chemoresistance to 5-fluorouracil by upregulation of BIRC3 expression in colorectal cancer. J Exp Clin Cancer Res. 2019;38(1):1–13.

    Article  Google Scholar 

  111. Brennan CA, Garrett WS. Gut Microbiota, Inflammation, and Colorectal Cancer. Annu Rev Microbiol. 2016;70:395–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Daillère R, Vétizou M, Waldschmitt N, Yamazaki T, Isnard C, Poirier-Colame V, et al. Enterococcus hirae and Barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects. Immunity. 2016;45(4):931–43.

    Article  PubMed  Google Scholar 

  113. Viaud S, Saccheri F, Mignot G, Yamazaki T, Daillère R, Hannani D, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science. 2013;342(6161):971–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti–PD-L1 efficacy. Science. 2015;350(6264):1084–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Uribe-Herranz M, Rafail S, Beghi S, Gil-de-Gómez L, Verginadis I, Bittinger K, et al. Gut microbiota modulate dendritic cell antigen presentation and radiotherapy-induced antitumor immune response. J Clin Investig. 2020;130(1):466–79.

    Article  CAS  PubMed  Google Scholar 

  116. Kumar R, Herold JL, Schady D, Davis J, Kopetz S, Martinez-Moczygemba M, et al. Streptococcus gallolyticus subsp. gallolyticus promotes colorectal tumor development. PLoS Pathog. 2017;13(7):e1006440.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Kumar R, Herold JL, Taylor J, Xu J, Xu Y. Variations among Streptococcus gallolyticus subsp. gallolyticus strains in connection with colorectal cancer. Sci Rep. 2018;8(1):1–10.

    Google Scholar 

  118. Pasquereau-Kotula E, Martins M, Aymeric L, Dramsi S. Significance of Streptococcus gallolyticus subsp. gallolyticus association with colorectal cancer. Front Microbiol. 2018;9:614.

    Article  PubMed  PubMed Central  Google Scholar 

  119. De Almeida CV, Lulli M, di Pilato V, Schiavone N, Russo E, Nannini G, et al. Differential responses of colorectal cancer cell lines to Enterococcus faecalis’ strains isolated from healthy donors and colorectal cancer patients. J Clin Med. 2019;8(3):388.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Wang X, Allen TD, May RJ, Lightfoot S, Houchen CW, Huycke MM. Enterococcus faecalis induces aneuploidy and tetraploidy in colonic epithelial cells through a bystander effect. Can Res. 2008;68(23):9909–17.

    Article  CAS  Google Scholar 

  121. Fearon ER. Molecular genetics of colorectal cancer. Annu Rev Pathol. 2011;6:479–507.

    Article  CAS  PubMed  Google Scholar 

  122. Shogan BD, Belogortseva N, Luong PM, Zaborin A, Lax S, Bethel C, et al. Collagen degradation and MMP9 activation by Enterococcus faecalis contribute to intestinal anastomotic leak. Science Transl Med. 2015;7(286):286ra68-ra68.

    Article  Google Scholar 

  123. Kim M, Lee S-T, Choi S, Lee H, Kwon SS, Byun JH, et al. Fusobacterium nucleatum in biopsied tissues from colorectal cancer patients and alcohol consumption in Korea. Sci Rep. 2020;10(1):1–10.

    Google Scholar 

  124. Bärnighausen T, Bloom DE, Humair S. Human resources for treating HIV/AIDS: are the preventive effects of antiretroviral treatment a game changer? PLoS One. 2016;11(10): e0163960.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Yang Y, Weng W, Peng J, Hong L, Yang L, Toiyama Y, et al. Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activating toll-like receptor 4 signaling to nuclear factor− κB, and up-regulating expression of microRNA-21. Gastroenterology. 2017;152(4):851-66. e24.

    Article  CAS  PubMed  Google Scholar 

  126. Yu Y-N, Yu T-C, Zhao H-J, Sun T-T, Chen H-M, Chen H-Y, et al. Berberine may rescue Fusobacterium nucleatum-induced colorectal tumorigenesis by modulating the tumor microenvironment. Oncotarget. 2015;6(31):32013.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Boleij A, Hechenbleikner EM, Goodwin AC, Badani R, Stein EM, Lazarev MG, et al. The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin Infect Dis. 2015;60(2):208–15.

    Article  CAS  PubMed  Google Scholar 

  128. Chung L, Orberg ET, Geis AL, Chan JL, Fu K, Shields CED, et al. Bacteroides fragilis toxin coordinates a pro-carcinogenic inflammatory cascade via targeting of colonic epithelial cells. Cell Host Microbe. 2018;23(2):203-14. e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Xie X, Jiang D, Zhou X, Ye X, Yang P, He Y. Recombinant Bacteroides fragilis enterotoxin-1 (rBFT-1) promotes proliferation of colorectal cancer via CCL3-related molecular pathways. Open Life Sci. 2021;16(1):408–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Tsoi H, Chu ES, Zhang X, Sheng J, Nakatsu G, Ng SC, et al. Peptostreptococcus anaerobius induces intracellular cholesterol biosynthesis in colon cells to induce proliferation and causes dysplasia in mice. Gastroenterology. 2017;152(6):1419-33. e5.

    Article  PubMed  Google Scholar 

  131. Long X, Wong CC, Tong L, Chu ES, Ho Szeto C, Go MY, et al. Peptostreptococcus anaerobius promotes colorectal carcinogenesis and modulates tumour immunity. Nat Microbiol. 2019;4(12):2319–30.

    Article  PubMed  Google Scholar 

  132. Swidsinski A, Khilkin M, Kerjaschki D, Schreiber S, Ortner M, Weber J, et al. Association between intraepithelial Escherichia coli and colorectal cancer. Gastroenterology. 1998;115(2):281–6.

    Article  CAS  PubMed  Google Scholar 

  133. Cuevas-Ramos G, Petit CR, Marcq I, Boury M, Oswald E, Nougayrède J-P. Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc Natl Acad Sci. 2010;107(25):11537–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

XWa, and XWe: contributed to the idea design, and literature search. XYe, and CQ: contributed in writing and editing. XYa and RJ, wrote parts of the manuscript and contributed to designing the figures.

Corresponding author

Correspondence to Xianjun Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

It is not applicable.

Informed Consent

It is not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, X., Ye, X., Yang, X. et al. The crosstalk between intestinal bacterial microbiota and immune cells in colorectal cancer progression. Clin Transl Oncol 25, 620–632 (2023). https://doi.org/10.1007/s12094-022-02995-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-022-02995-5

Keywords

Navigation