Skip to main content

Advertisement

Log in

Microbiota and cancer: current understanding and mechanistic implications

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

During last few decades, role of microbiota and its importance in several diseases has been a hot topic for research. The microbiota is considered as an accessory organ for maintaining normal physiology of an individual. These microbiota organisms which normally colonize several epithelial surfaces are known to secrete several small molecules leading to local and systemic effects on normal biological processes. The role of microbiota is also established in carcinogenesis as per several recent findings. The effects of microbiota on cancer is not only limited to their contribution in oncogenesis, but the overall susceptibility for oncogenesis and its subsequent progression, development of coinfections, and response to anticancer therapy is also found to be affected by microbiota. The information about microbiota and subsequent contributions of microbes in anticancer response motivated researchers in development of microbes-based anticancer therapeutics. We provided current status of microbiota contribution in oncogenesis with special reference to their mechanistic implications in different aspects of oncogenesis. In addition, the mechanistic implications of bacteria in anticancer therapy are also discussed. We conclude that several mechanisms of microbiota-mediated regulation of oncogenesis is known, but approaches must be focused on understanding contribution of microbiota as a community rather than single organisms-mediated effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Afzal M, Mazhar SF, Sana S, Naeem M, Rasool MH, Saqalein M, et al. Neurological and cognitive significance of probiotics: a holy grail deciding individual personality. Future Microbiol. 2020;15:1059–74. https://doi.org/10.2217/fmb-2019-0143.

    Article  CAS  PubMed  Google Scholar 

  2. Markowiak P, Slizewska K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients. 2017. https://doi.org/10.3390/nu9091021.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kazemian N, Mahmoudi M, Halperin F, Wu JC, Pakpour S. Gut microbiota and cardiovascular disease: opportunities and challenges. Microbiome. 2020;8(1):36. https://doi.org/10.1186/s40168-020-00821-0.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hills RD Jr, Pontefract BA, Mishcon HR, Black CA, Sutton SC, Theberge CR. Gut microbiome: profound implications for diet and disease. Nutrients. 2019. https://doi.org/10.3390/nu11071613.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Panebianco C, Andriulli A, Pazienza V. Pharmacomicrobiomics: exploiting the drug-microbiota interactions in anticancer therapies. Microbiome. 2018;6(1):92. https://doi.org/10.1186/s40168-018-0483-7.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Khan AA, Shrivastava A, Khurshid M. Normal to cancer microbiome transformation and its implication in cancer diagnosis. Biochem Biophys Acta. 2012;1826(2):331–7. https://doi.org/10.1016/j.bbcan.2012.05.005.

    Article  CAS  PubMed  Google Scholar 

  7. Khan AA, Nema V, Khan Z. Current status of probiotics for prevention and management of gastrointestinal cancers. Expert Opin Biol Therapy. 2020. https://doi.org/10.1080/14712598.2021.1828858.

    Article  Google Scholar 

  8. Khan AA, Khurshid M, Khan S, Alshamsan A. Gut microbiota and probiotics: current status and their role in cancer therapeutics. Drug Dev Res. 2013;74(6):365–75. https://doi.org/10.1002/ddr.21087.

    Article  CAS  Google Scholar 

  9. Sedighi M, Zahedi Bialvaei A, Hamblin MR, Ohadi E, Asadi A, Halajzadeh M, et al. Therapeutic bacteria to combat cancer; current advances, challenges, and opportunities. Cancer Med. 2019;8(6):3167–81. https://doi.org/10.1002/cam4.2148.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zur HH. The search for infectious causes of human cancers: where and why. Virology. 2009;392(1):1–10. https://doi.org/10.1016/j.virol.2009.06.001.

    Article  CAS  Google Scholar 

  11. Ishaq S, Nunn L. Helicobacter pylori and gastric cancer: a state of the art review. Gastroenterol Hepatol Bed Bench. 2015;8(Suppl 1):S6–14.

    PubMed  PubMed Central  Google Scholar 

  12. Khan AA, Abuderman AA, Ashraf MT, Khan Z. Protein-protein interactions of HPV-Chlamydia trachomatis-human and their potential in cervical cancer. Future Microbiol. 2020;15:509–20. https://doi.org/10.2217/fmb-2019-0242.

    Article  CAS  PubMed  Google Scholar 

  13. Khan AA, Khan Z, Malik A, Kalam MA, Cash P, Ashraf MT, et al. Colorectal cancer-inflammatory bowel disease nexus and felony of Escherichia coli. Life Sci. 2017;180:60–7. https://doi.org/10.1016/j.lfs.2017.05.016.

    Article  CAS  PubMed  Google Scholar 

  14. Khan AA, Khan Z, Malik A, Shrivastava A, Jain SK, Alshamsan A. Computational prediction of Escherichia coli proteins host subcellular targeting and their implications in colorectal cancer etiology. Cancer Lett. 2015;364(1):25–32. https://doi.org/10.1016/j.canlet.2015.04.024.

    Article  CAS  PubMed  Google Scholar 

  15. Khan AA. In silico prediction of Escherichia coli proteins targeting the host cell nucleus, with special reference to their role in colon cancer etiology. J Comput Biol J Comput Mol Cell Biol. 2014;21(6):466–75. https://doi.org/10.1089/cmb.2014.0001.

    Article  CAS  Google Scholar 

  16. Khan AA, Cash P. E. coli and colon cancer: is mutY a culprit? Cancer Lett. 2013;341(2):127–31. https://doi.org/10.1016/j.canlet.2013.08.003.

    Article  CAS  PubMed  Google Scholar 

  17. Tewari M, Mishra RR, Shukla HS. Salmonella typhi and gallbladder cancer: report from an endemic region. Hepat Pancreat Dis Int. 2010;9(5):524–30.

    CAS  Google Scholar 

  18. Sheflin AM, Whitney AK, Weir TL. Cancer-promoting effects of microbial dysbiosis. Curr Oncol Rep. 2014;16(10):406. https://doi.org/10.1007/s11912-014-0406-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jenkins SV, Robeson MS 2nd, Griffin RJ, Quick CM, Siegel ER, Cannon MJ, et al. Gastrointestinal tract dysbiosis enhances distal tumor progression through suppression of leukocyte trafficking. Can Res. 2019;79(23):5999–6009. https://doi.org/10.1158/0008-5472.CAN-18-4108.

    Article  CAS  Google Scholar 

  20. Gao Z, Guo B, Gao R, Zhu Q, Qin H. Microbiota disbiosis is associated with colorectal cancer. Front Microbiol. 2015;6:20. https://doi.org/10.3389/fmicb.2015.00020.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Xuan C, Shamonki JM, Chung A, Dinome ML, Chung M, Sieling PA, et al. Microbial dysbiosis is associated with human breast cancer. PLoS ONE. 2014;9(1): e83744. https://doi.org/10.1371/journal.pone.0083744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rowland RHIR. Metabolic activities of the gut microflora in relation to cancer. Microb Ecol Health Dis. 2000;12(2):179–85. https://doi.org/10.1080/089106000750060431.

    Article  Google Scholar 

  23. Saito Y, Takano T, Rowland I. Effects of soybean oligosaccharides on the human gut microflora in in vitro culture. Microb Ecol Health Dis. 1992;5(2):105–10. https://doi.org/10.3109/08910609209141296.

    Article  Google Scholar 

  24. Gupta S, Allen-Vercoe E, Petrof EO. Fecal microbiota transplantation: in perspective. Ther Adv Gastroenterol. 2016;9(2):229–39. https://doi.org/10.1177/1756283X15607414.

    Article  Google Scholar 

  25. Willett WC. Nutrition and cancer. Salud Publ Mex. 1997;39(4):298–309. https://doi.org/10.1590/s0036-36341997000400008.

    Article  CAS  Google Scholar 

  26. Heiss CN, Olofsson LE. Gut microbiota-dependent modulation of energy metabolism. J Innate Immun. 2018;10(3):163–71. https://doi.org/10.1159/000481519.

    Article  CAS  PubMed  Google Scholar 

  27. Abo H, Chassaing B, Harusato A, Quiros M, Brazil JC, Ngo VL, et al. Erythroid differentiation regulator-1 induced by microbiota in early life drives intestinal stem cell proliferation and regeneration. Nat Commun. 2020;11(1):513. https://doi.org/10.1038/s41467-019-14258-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jacobs LR. Effects of dietary fiber on mucosal growth and cell proliferation in the small intestine of the rat: a comparison of oat bran, pectin, and guar with total fiber deprivation. Am J Clin Nutr. 1983;37(6):954–60. https://doi.org/10.1093/ajcn/37.6.954.

    Article  CAS  PubMed  Google Scholar 

  29. Shaw D, Gohil K, Basson MD. Intestinal mucosal atrophy and adaptation. World J Gastroenterol. 2012;18(44):6357–75. https://doi.org/10.3748/wjg.v18.i44.6357.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sakata T, von Engelhardt W. Stimulatory effect of short chain fatty acids on the epithelial cell proliferation in rat large intestine. Comp Biochem Physiol A Comp Physiol. 1983;74(2):459–62. https://doi.org/10.1016/0300-9629(83)90631-x.

    Article  CAS  PubMed  Google Scholar 

  31. Kaunitz JD, Akiba Y. Control of intestinal epithelial proliferation and differentiation: the microbiome, enteroendocrine L cells, telocytes, enteric nerves, and GLP. Too Dig Dis Sci. 2019;64(10):2709–16. https://doi.org/10.1007/s10620-019-05778-1.

    Article  PubMed  Google Scholar 

  32. Khan AA, Khan Z. Bacterial nucleomodulins and cancer: an unresolved enigma. Transl Oncol. 2021;14(1): 100922. https://doi.org/10.1016/j.tranon.2020.100922.

    Article  PubMed  Google Scholar 

  33. Hausmann M. How bacteria-induced apoptosis of intestinal epithelial cells contributes to mucosal inflammation. Int J Inflamm. 2010;2010: 574568. https://doi.org/10.4061/2010/574568.

    Article  CAS  Google Scholar 

  34. Castillo-Ruiz A, Mosley M, George AJ, Mussaji LF, Fullerton EF, Ruszkowski EM, et al. The microbiota influences cell death and microglial colonization in the perinatal mouse brain. Brain Behav Immun. 2018;67:218–29. https://doi.org/10.1016/j.bbi.2017.08.027.

    Article  PubMed  Google Scholar 

  35. Yan F, Polk DB. Probiotic bacterium prevents cytokine-induced apoptosis in intestinal epithelial cells. J Biol Chem. 2002;277(52):50959–65. https://doi.org/10.1074/jbc.M207050200.

    Article  CAS  PubMed  Google Scholar 

  36. Yan F, Cao H, Cover TL, Whitehead R, Washington MK, Polk DB. Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth. Gastroenterology. 2007;132(2):562–75. https://doi.org/10.1053/j.gastro.2006.11.022.

    Article  CAS  PubMed  Google Scholar 

  37. Khan AA, Khan Z, Warnakulasuriya S. Cancer-associated toll-like receptor modulation and insinuation in infection susceptibility: association or coincidence? Ann Oncol. 2016;27(6):984–97. https://doi.org/10.1093/annonc/mdw053.

    Article  CAS  PubMed  Google Scholar 

  38. Li X, Jiang S, Tapping RI. Toll-like receptor signaling in cell proliferation and survival. Cytokine. 2010;49(1):1–9. https://doi.org/10.1016/j.cyto.2009.08.010.

    Article  CAS  PubMed  Google Scholar 

  39. Pouncey AL, Scott AJ, Alexander JL, Marchesi J, Kinross J. Gut microbiota, chemotherapy and the host: the influence of the gut microbiota on cancer treatment. Ecancermedicalscience. 2018;12:868. https://doi.org/10.3332/ecancer.2018.868.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Doestzada M, Vila AV, Zhernakova A, Koonen DPY, Weersma RK, Touw DJ, et al. Pharmacomicrobiomics: a novel route towards personalized medicine? Protein Cell. 2018;9(5):432–45. https://doi.org/10.1007/s13238-018-0547-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Letertre MPM, Munjoma N, Wolfer K, Pechlivanis A, McDonald JAK, Hardwick RN, et al. A two-way interaction between methotrexate and the gut microbiota of male sprague-dawley rats. J Proteome Res. 2020;19(8):3326–39. https://doi.org/10.1021/acs.jproteome.0c00230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yuan L, Zhang S, Li H, Yang F, Mushtaq N, Ullah S, et al. The influence of gut microbiota dysbiosis to the efficacy of 5-fluorouracil treatment on colorectal cancer. Biomed Pharmacother. 2018;108:184–93. https://doi.org/10.1016/j.biopha.2018.08.165.

    Article  CAS  PubMed  Google Scholar 

  43. Viaud S, Saccheri F, Mignot G, Yamazaki T, Daillere R, Hannani D, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science. 2013;342(6161):971–6. https://doi.org/10.1126/science.1240537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Boussios S, Pentheroudakis G, Katsanos K, Pavlidis N. Systemic treatment-induced gastrointestinal toxicity: incidence, clinical presentation and management. Ann Gastroenterol. 2012;25(2):106–18.

    PubMed  PubMed Central  Google Scholar 

  45. Cheng WY, Wu CY, Yu J. The role of gut microbiota in cancer treatment: friend or foe? Gut. 2020;69(10):1867–76. https://doi.org/10.1136/gutjnl-2020-321153.

    Article  CAS  PubMed  Google Scholar 

  46. Shrivastava A, Khan AA, Jain SK, Singhal PK, Jain S, Marotta F, et al. Biotechnological advancement in isolation of anti-neoplastic compounds from natural origin: a novel source of L-asparaginase. Acta bio-medica Atenei Parm. 2010;81(2):104–8.

    CAS  Google Scholar 

  47. Karpinski TM, Adamczak A. Anticancer activity of bacterial proteins and peptides. Pharmaceutics. 2018. https://doi.org/10.3390/pharmaceutics10020054.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Fessler J, Matson V, Gajewski TF. Exploring the emerging role of the microbiome in cancer immunotherapy. J Immunother Cancer. 2019;7(1):108. https://doi.org/10.1186/s40425-019-0574-4.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lugito N, Kurniawan A, Damay V, Chyntya H, Sugianto N. The role of gut microbiota in SARS-CoV-2 infection: focus on angiotensin-converting enzyme 2. Curr Med Issues. 2020;18(3):261–3. https://doi.org/10.4103/cmi.cmi_80_20.

    Article  Google Scholar 

  50. Kurian SJ, Unnikrishnan MK, Miraj SS, Bagchi D, Banerjee M, Reddy BS, et al. Probiotics in prevention and treatment of COVID-19: current perspective and future prospects. Arch Med Res. 2021. https://doi.org/10.1016/j.arcmed.2021.03.002.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Vetizou M, Pitt JM, Daillere R, Lepage P, Waldschmitt N, Flament C, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015;350(6264):1079–84. https://doi.org/10.1126/science.aad1329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Conejo-Garcia JR, Rutkowski MR. Small but mighty: selected commensal bacterial species determine the effectiveness of anti-cancer immunotherapies. Immunity. 2015;43(6):1037–9. https://doi.org/10.1016/j.immuni.2015.11.014.

    Article  CAS  PubMed  Google Scholar 

  53. Daillere R, Derosa L, Bonvalet M, Segata N, Routy B, Gariboldi M, et al. Trial watch : the gut microbiota as a tool to boost the clinical efficacy of anticancer immunotherapy. Oncoimmunology. 2020;9(1):1774298. https://doi.org/10.1080/2162402X.2020.1774298.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Virchow R. An address on the value of pathological experiments. BMJ. 1881;2(1075):198–203. https://doi.org/10.1136/bmj.2.1075.198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140(6):883–99. https://doi.org/10.1016/j.cell.2010.01.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Francescone R, Hou V, Grivennikov SI. Microbiome, inflammation, and cancer. Cancer J. 2014;20(3):181–9. https://doi.org/10.1097/PPO.0000000000000048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schirmer M, Smeekens SP, Vlamakis H, Jaeger M, Oosting M, Franzosa EA, et al. Linking the human gut microbiome to inflammatory cytokine production capacity. Cell. 2016;167(4):1125-36 e8. https://doi.org/10.1016/j.cell.2016.10.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mendes V, Galvao I, Vieira AT. Mechanisms by which the gut microbiota influences cytokine production and modulates host inflammatory responses. J Interferon Cytokine Res Off J Int Soc Interferon Cytokine Res. 2019;39(7):393–409. https://doi.org/10.1089/jir.2019.0011.

    Article  CAS  Google Scholar 

  59. Sethi V, Kurtom S, Tarique M, Lavania S, Malchiodi Z, Hellmund L, et al. Gut microbiota promotes tumor growth in mice by modulating immune response. Gastroenterology. 2018;155(1):33–76. https://doi.org/10.1053/j.gastro.2018.04.001.

    Article  CAS  PubMed  Google Scholar 

  60. Zhao J, Chen X, Herjan T, Li X. The role of interleukin-17 in tumor development and progression. J Exper Med. 2020. https://doi.org/10.1084/jem.20190297.

    Article  Google Scholar 

  61. Mannino MH, Zhu Z, Xiao H, Bai Q, Wakefield MR, Fang Y. The paradoxical role of IL-10 in immunity and cancer. Cancer Lett. 2015;367(2):103–7. https://doi.org/10.1016/j.canlet.2015.07.009.

    Article  CAS  PubMed  Google Scholar 

  62. Arthur JC, Perez-Chanona E, Muhlbauer M, Tomkovich S, Uronis JM, Fan TJ, et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science. 2012;338(6103):120–3. https://doi.org/10.1126/science.1224820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fukugaiti MH, Ignacio A, Fernandes MR, Ribeiro Junior U, Nakano V, Avila-Campos MJ. High occurrence of Fusobacterium nucleatum and Clostridium difficile in the intestinal microbiota of colorectal carcinoma patients. Braz J microbial Publ Braz Soc Microbiol. 2015;46(4):1135–40. https://doi.org/10.1590/S1517-838246420140665.

    Article  CAS  Google Scholar 

  64. Castellarin M, Warren RL, Freeman JD, Dreolini L, Krzywinski M, Strauss J, et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 2012;22(2):299–306. https://doi.org/10.1101/gr.126516.111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hsieh YY, Tung SY, Pan HY, Yen CW, Xu HW, Lin YJ, et al. Increased abundance of Clostridium and Fusobacterium in gastric microbiota of patients with gastric cancer in Taiwan. Sci Rep. 2018;8(1):158. https://doi.org/10.1038/s41598-017-18596-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yamamura K, Baba Y, Nakagawa S, Mima K, Miyake K, Nakamura K, et al. Human microbiome Fusobacterium nucleatum in esophageal cancer tissue is associated with prognosis. Clin Cancer Res Off J Am Assoc Cancer Res. 2016;22(22):5574–81. https://doi.org/10.1158/1078-0432.CCR-16-1786.

    Article  CAS  Google Scholar 

  67. Shin JM, Luo T, Kamarajan P, Fenno JC, Rickard AH, Kapila YL. Microbial communities associated with primary and metastatic head and neck squamous cell carcinoma—a high Fusobacterial and low Streptococcal signature. Sci Rep. 2017;7(1):9934. https://doi.org/10.1038/s41598-017-09786-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gur C, Ibrahim Y, Isaacson B, Yamin R, Abed J, Gamliel M, et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity. 2015;42(2):344–55. https://doi.org/10.1016/j.immuni.2015.01.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Abed J, Emgard JE, Zamir G, Faroja M, Almogy G, Grenov A, et al. Fap2 mediates Fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed Gal-GalNAc. Cell Host Microbe. 2016;20(2):215–25. https://doi.org/10.1016/j.chom.2016.07.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin. Cell Host Microbe. 2013;14(2):195–206. https://doi.org/10.1016/j.chom.2013.07.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gholizadeh P, Eslami H, Kafil HS. Carcinogenesis mechanisms of Fusobacterium nucleatum. Biomed Pharmacother. 2017;89:918–25. https://doi.org/10.1016/j.biopha.2017.02.102.

    Article  CAS  PubMed  Google Scholar 

  72. Long X, Wong CC, Tong L, Chu ESH, Ho Szeto C, Go MYY, et al. Peptostreptococcus anaerobius promotes colorectal carcinogenesis and modulates tumour immunity. Nat Microbiol. 2019;4(12):2319–30. https://doi.org/10.1038/s41564-019-0541-3.

    Article  CAS  PubMed  Google Scholar 

  73. Khan AA, Bano Y. Salmonella enterica subsp. enterica host-pathogen interactions and their implications in gallbladder cancer. Microb Pathog. 2021;157:105011. https://doi.org/10.1016/j.micpath.2021.105011.

    Article  CAS  PubMed  Google Scholar 

  74. Zamani S, Taslimi R, Sarabi A, Jasemi S, Sechi LA, Feizabadi MM. Enterotoxigenic Bacteroides fragilis: a possible etiological candidate for bacterially-induced colorectal precancerous and cancerous lesions. Front Cell Infect Microbiol. 2020. https://doi.org/10.3389/fcimb.2019.00449.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Cheng WT, Kantilal HK, Davamani F. The mechanism of Bacteroides fragilis toxin contributes to colon cancer formation. Malays J Med Sci. 2020;27(4):9–21. https://doi.org/10.21315/mjms2020.27.4.2.

    Article  PubMed  Google Scholar 

  76. Gnanasekaran J, Binder Gallimidi A, Saba E, Pandi K, Eli Berchoer L, Hermano E, et al. Intracellular Porphyromonas gingivalis promotes the tumorigenic behavior of pancreatic carcinoma cells. Cancers. 2020;12(8):2331.

    Article  CAS  PubMed Central  Google Scholar 

  77. Shiels MS, Albanes D, Virtamo J, Engels EA. Increased risk of lung cancer in men with tuberculosis in the alpha-tocopherol, beta-carotene cancer prevention study. Cancer Epidemiol Biomark Prev. 2011;20(4):672. https://doi.org/10.1158/1055-9965.EPI-10-1166.

    Article  CAS  Google Scholar 

  78. Nalbandian A, Yan BS, Pichugin A, Bronson RT, Kramnik I. Lung carcinogenesis induced by chronic tuberculosis infection: the experimental model and genetic control. Oncogene. 2009;28(17):1928–38. https://doi.org/10.1038/onc.2009.32.

    Article  CAS  PubMed  Google Scholar 

  79. Di Domenico EG, Cavallo I, Pontone M, Toma L, Ensoli F. Biofilm producing Salmonella typhi: chronic colonization and development of gallbladder cancer. Int J Mol Sci. 2017. https://doi.org/10.3390/ijms18091887.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Servetas SL, Bridge DR, Merrell DS. Molecular mechanisms of gastric cancer initiation and progression by Helicobacter pylori. Curr Opin Infect Dis. 2016;29(3):304–10. https://doi.org/10.1097/QCO.0000000000000248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Khan AA, Khan Z, Kalam MA, Khan AA. Inter-kingdom prediction certainty evaluation of protein subcellular localization tools: microbial pathogenesis approach for deciphering host microbe interaction. Brief Bioinform. 2018;19(1):12–22. https://doi.org/10.1093/bib/bbw093.

    Article  CAS  PubMed  Google Scholar 

  82. Khan AA, Khan Z. COVID-2019-associated overexpressed Prevotella proteins mediated host-pathogen interactions and their role in coronavirus outbreak. Bioinformatics. 2020;36(13):4065–9. https://doi.org/10.1093/bioinformatics/btaa285.

    Article  CAS  PubMed  Google Scholar 

  83. Khan AA, Khan Z. Comparative host-pathogen protein-protein interaction analysis of recent coronavirus outbreaks and important host targets identification. Brief Bioinform. 2021;22(2):1206–14. https://doi.org/10.1093/bib/bbaa207.

    Article  CAS  PubMed  Google Scholar 

  84. Collina F, De Chiara A, De Renzo A, De Rosa G, Botti G, Franco R. Chlamydia psittaci in ocular adnexa MALT lymphoma: a possible role in lymphomagenesis and a different geographical distribution. Infect Agents Cancer. 2012;7:8. https://doi.org/10.1186/1750-9378-7-8.

    Article  Google Scholar 

  85. Ferreri AJM, Dolcetti R, Du MQ, Doglioni C, Giordano Resti A, Politi LS, et al. Ocular adnexal MALT lymphoma: an intriguing model for antigen-driven lymphomagenesis and microbial-targeted therapy. Ann Oncol. 2008;19(5):835–46. https://doi.org/10.1093/annonc/mdm513.

    Article  CAS  PubMed  Google Scholar 

  86. Olsen I, Yilmaz O. Possible role of Porphyromonas gingivalis in orodigestive cancers. J Oral Microbiol. 2019;11(1):1563410. https://doi.org/10.1080/20002297.2018.1563410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Díaz P, Valenzuela Valderrama M, Bravo J, Quest AFG. Helicobacter pylori and gastric cancer: adaptive cellular mechanisms involved in disease progression. Front Microbiol. 2018. https://doi.org/10.3389/fmicb.2018.00005.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Alipour M. Molecular mechanism of Helicobacter pylori-induced gastric cancer. J Gastrointest Cancer. 2020. https://doi.org/10.1007/s12029-020-00518-5.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Cao S, Li J, Lu J, Zhong R, Zhong H. Mycobacterium tuberculosis antigens repress Th1 immune response suppression and promotes lung cancer metastasis through PD-1/PDl-1 signaling pathway. Cell Death Dis. 2019;10(2):44. https://doi.org/10.1038/s41419-018-1237-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Littman AJ, Jackson LA, Vaughan TL. Chlamydia pneumoniae and lung cancer: epidemiologic evidence. Cancer Epidemiol Biomark Prev. 2005;14(4):773. https://doi.org/10.1158/1055-9965.EPI-04-0599.

    Article  CAS  Google Scholar 

  91. Abdulamir AS, Hafidh RR, Abu BF. The association of Streptococcus bovis/gallolyticus with colorectal tumors: the nature and the underlying mechanisms of its etiological role. J Exper Clin Cancer Res CR. 2011;30:11. https://doi.org/10.1186/1756-9966-30-11.

    Article  Google Scholar 

  92. Oehmcke-Hecht S, Mandl V, Naatz LT, Dühring L, Köhler J, Kreikemeyer B, et al. Streptococcus gallolyticus abrogates anti-carcinogenic properties of tannic acid on low-passage colorectal carcinomas. Sci Rep. 2020;10(1):4714. https://doi.org/10.1038/s41598-020-61458-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Al-Saleem T, Al-Mondhiry H. Immunoproliferative small intestinal disease (IPSID): a model for mature B-cell neoplasms. Blood. 2005;105(6):2274–80. https://doi.org/10.1182/blood-2004-07-2755.

    Article  CAS  PubMed  Google Scholar 

  94. Sun CH, Li BB, Wang B, Zhao J, Zhang XY, Li TT, et al. The role of Fusobacterium nucleatum in colorectal cancer: from carcinogenesis to clinical management. Chronic Dis Transl Med. 2019;5(3):178–87. https://doi.org/10.1016/j.cdtm.2019.09.001.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Haghi F, Goli E, Mirzaei B, Zeighami H. The association between fecal enterotoxigenic B. fragilis with colorectal cancer. BMC Cancer. 2019;19(1):879. https://doi.org/10.1186/s12885-019-6115-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Umar S. Citrobacter infection and wnt signaling. Curr Colorectal Cancer Rep. 2012. https://doi.org/10.1007/s11888-012-0143-4.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Karim S, Souho T, Benlemlih M, Bennani B. Cervical cancer induction enhancement potential of Chlamydia trachomatis: a systematic review. Curr Microbiol. 2018;75(12):1667–74. https://doi.org/10.1007/s00284-018-1439-7.

    Article  CAS  PubMed  Google Scholar 

  98. Tangney M, Gahan CG. Listeria monocytogenes as a vector for anti-cancer therapies. Curr Gene Ther. 2010;10(1):46–55. https://doi.org/10.2174/156652310790945539.

    Article  CAS  PubMed  Google Scholar 

  99. Morrow ZT, Powers ZM, Sauer J-D. Listeria monocytogenes cancer vaccines: bridging innate and adaptive immunity. Curr Clin Microbiol Rep. 2019;6(4):213–24. https://doi.org/10.1007/s40588-019-00133-4.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Wei H, Chen L, Lian G, Yang J, Li F, Zou Y, et al. Antitumor mechanisms of Bifidobacteria. Oncol Lett. 2018;16(1):3–8. https://doi.org/10.3892/ol.2018.8692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Broadway KM, Scharf BE. Salmonella typhimurium as an anticancer therapy: recent advances and perspectives. Curr Clin Microbiol Rep. 2019;6(4):225–39. https://doi.org/10.1007/s40588-019-00132-5.

    Article  Google Scholar 

  102. Maletzki C, Linnebacher M, Kreikemeyer B, Emmrich J. Pancreatic cancer regression by intratumoural injection of live Streptococcus pyogenes in a syngeneic mouse model. Gut. 2008;57(4):483–91. https://doi.org/10.1136/gut.2007.125419.

    Article  CAS  PubMed  Google Scholar 

  103. Staedtke V, Roberts NJ, Bai RY, Zhou S. Clostridium novyi-NT in cancer therapy. Genes Dis. 2016;3(2):144–52. https://doi.org/10.1016/j.gendis.2016.01.003.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Feng X, He P, Zeng C, Li YH, Das SK, Li B, et al. Novel insights into the role of Clostridium novyi-NT related combination bacteriolytic therapy in solid tumors. Oncol Lett. 2021;21(2):110. https://doi.org/10.3892/ol.2020.12371.

    Article  CAS  PubMed  Google Scholar 

  105. Magno C, Melloni D, Gali A, Mucciardi G, Nicocia G, Morandi B, et al. The anti-tumor activity of bacillus Calmette-Guerin in bladder cancer is associated with an increase in the circulating level of interleukin-2. Immunol Lett. 2002;81(3):235–8. https://doi.org/10.1016/s0165-2478(02)00040-8.

    Article  CAS  PubMed  Google Scholar 

  106. Araghi A, Hashemi S, Sepahi AA, Faramarzi MA, Amin M. Purification and study of anti-cancer effects of Serratia marcescens serralysin. Iran J Microbiol. 2019;11(4):320–7.

    PubMed  PubMed Central  Google Scholar 

  107. Li D, Liu J, Wang X, Kong D, Du W, Li H, et al. Biological potential and mechanism of prodigiosin from Serratia marcescens Subsp. lawsoniana in human choriocarcinoma and prostate cancer cell lines. Int J Mol Sci. 2018. https://doi.org/10.3390/ijms19113465.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Shafiee F, Aucoin MG, Jahanian-Najafabadi A. Targeted diphtheria toxin-based therapy: a review article. Front Microbiol. 2019;10:2340. https://doi.org/10.3389/fmicb.2019.02340.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

AAK conceptualization; data curation; formal analysis; project administration; resources; visualization; roles/writing—original draft; writing—review and editing, ATS data curation; formal analysis; investigation; roles/writing—review and editing, HS conceptualization; data curation; formal analysis; roles/writing—writing—review and editing, PC formal analysis; project administration; resources; supervision; validation; roles/writing—review and editing.

Corresponding author

Correspondence to A. A. Khan.

Ethics declarations

Conflict of interest

The authors have declared no conflicts of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Data availability

All relevant data are available with manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A.A., Sirsat, A.T., Singh, H. et al. Microbiota and cancer: current understanding and mechanistic implications. Clin Transl Oncol 24, 193–202 (2022). https://doi.org/10.1007/s12094-021-02690-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-021-02690-x

Keywords