Skip to main content

Advertisement

Log in

Suppressive role of Viola odorata extract on malignant characters of mammosphere-derived breast cancer stem cells

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Background

Mammospheres are breast cancer stem cells (BCSCs) that could be yielded through culturing cells in non-adherent and non-differentiating condition. With regard to therapy resistance of cancer stem cells (CSCs), it is essential to discover efficient approaches targeting CSCs. Viola odorata extract has been considered as a traditional herbal anti-metastatic drug in several cancer cells. Effect of this drug on BCSCs has not been clearly identified. Current study tries to detect and to compare effect of Viola odorata extract on malignant characterization of breast cancer cell lines and BCSCs.

Materials and methods

MCF7 and SKBR3 and their derived mammospheres as BCSCs were used and the effect of alcoholic extraction of Viola odorata on apoptosis and malignant characters of MCF7, SKBR3 and their derived BCSCs were analyzed and compared.

Results

Viola odorata extract induced cell death in MCF7, SKBR3 and their derived mammospheres through apoptosis without any effects on MCF10A. Also, this extract showed anti-migratory, anti-invasion and anti-colony formation activity in MCF7, SKBR3 and their derived mammospheres which was significantly more in MCF7- and SKBR3-derived mammospheres. Also, this extract decreased size and volume of tumors generated by MCF7, SKBR3 and their derived mammospheres in chicken embryo model.

Conclusion

Viola odorata extract exerted anti-cancerous activity on both breast cancer cell lines and their derived BCSCs. Anti-cancerous activity of this extract was significantly more in MCF7-, SKBR3-derived mammospheres in comparison with dedicated cell lines. Data suggest that Viola odorata extract mostly targets cancerous cells, not normal cells with exception in high concentration. It acts in a cell-dependent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ALDH:

Aldehyde dehydrogenase

b-FGF:

Basic fibroblast growth factor

BCSCs:

Breast cancer stem cells

CSCs:

Cancer stem cells

CAM:

Chorioallantoic membrane

Dox:

Doxorubicin

DMEM/F12:

Dulbecco’s modified Eagle’s medium/F12

EGF:

Epidermal growth factor

EGCG:

Epigallocatechin gallate

ESA:

Epithelial-specific antigen

ER:

Estrogen receptor

ECM:

Extracellular matrix

FBS:

Fetal bovine serum

H&E staining:

Hematoxylin and eosin staining

HPLC:

High-performance liquid chromatography

HER2:

Human epidermal growth factor receptor 2

IHC:

Immunohistochemistry

IC50:

50% Inhibitory concentration

OSCC:

Oral squamous cell carcinoma

OS:

Osteosarcoma

PARP:

Poly ADP ribose polymerase

PR:

Progesterone receptor

TBMS1:

Tubeimoside-1

TICs:

Tumor-initiating cells

References

  1. Alanazi IO, Khan Z. Understanding EGFR signaling in breast cancer and breast cancer stem cells: overexpression and therapeutic implications. Asian Pac J Cancer Prev APJCP. 2016;17:445–53.

    PubMed  Google Scholar 

  2. Nounou MI, ElAmrawy F, Ahmed N, Abdelraouf K, Goda S, Syed-Sha-Qhattal H. Breast cancer: conventional diagnosis and treatment modalities and recent patents and technologies. Breast Cancer. 2015;9:BCBCR–S29420.

    Google Scholar 

  3. Kamińska M, Ciszewski T, Łopacka-Szatan K, Miotła P, Starosławska E. Breast cancer risk factors. Przeglad menopauzalny= Menopause Rev. 2015;14:196.

    Google Scholar 

  4. Wang Y, Li W, Patel SS, Cong J, Zhang N, Sabbatino F, Liu X, Qi Y, Huang P, Lee H. Blocking the formation of radiation–induced breast cancer stem cells. Oncotarget. 2014;5:3743.

    PubMed  PubMed Central  Google Scholar 

  5. Kern KM, Schroeder JR. Comparison of cantharidin toxicity in breast cancer cells to two common chemotherapeutics. Int J Breast Cancer. 2014;2014:423059.

    PubMed  PubMed Central  Google Scholar 

  6. Prentice RL. Postmenopausal hormone therapy and the risks of coronary heart disease, breast cancer, and stroke. In Seminars in reproductive medicine. 2014; 32. p. 419. (NIH Public Access)

  7. Pavelic J. Editorial (thematic Issue: combined cancer therapy). Curr Pharm Des. 2014;20:6511–2.

    CAS  PubMed  Google Scholar 

  8. Lin CY, Barry-Holson KQ, Allison KH. Breast cancer stem cells: are we ready to go from bench to bedside? Histopathology. 2016;68:119–37.

    PubMed  Google Scholar 

  9. Michor F, Polyak K. The origins and implications of intratumor heterogeneity. Cancer Prev Res. 2010;3:1361–4.

    Google Scholar 

  10. Louie E, Nik S, Chen J-S, Schmidt M, Song B, Pacson C, Chen XF, Park S, Ju J, Chen EI. Identification of a stem-like cell population by exposing metastatic breast cancer cell lines to repetitive cycles of hypoxia and reoxygenation. Breast Cancer Res. 2010;12:R94.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Idowu MO, Kmieciak M, Dumur C, Burton RS, Grimes MM, Powers CN, Manjili MH. CD44+/CD24−/low cancer stem/progenitor cells are more abundant in triple-negative invasive breast carcinoma phenotype and are associated with poor outcome. Hum Pathol. 2012;43:364–73.

    CAS  PubMed  Google Scholar 

  12. Patel SA, Ndabahaliye A, Lim PK, Milton R, Rameshwar P. Challenges in the development of future treatments for breast cancer stem cells. Breast Cancer. 2010;2:1.

    PubMed  Google Scholar 

  13. Apontes P, Leontieva OV, Demidenko ZN, Li F, Blagosklonny MV. Exploring long-term protection of normal human fibroblasts and epithelial cells from chemotherapy in cell culture. Oncotarget. 2011;2:222.

    PubMed  PubMed Central  Google Scholar 

  14. Chen AC, Guo X, Derguini F, Gudas LJ. Human breast cancer cells and normal mammary epithelial cells: retinol metabolism and growth inhibition by the retinol metabolite 4-oxoretinol. Cancer Res. 1997;57:4642–51.

    CAS  PubMed  Google Scholar 

  15. Wang S, Konorev EA, Kotamraju S, Joseph J, Kalivendi S, Kalyanaraman B. Doxorubicin induces apoptosis in normal and tumor cells via distinctly different mechanisms intermediacy of H2O2-and p53-dependent pathways. J Biol Chem. 2004;279:25535–43.

    CAS  PubMed  Google Scholar 

  16. Fleming T. PDR for herbal medicines. NJ: Medical Economics Montvale; 2000.

    Google Scholar 

  17. Koochek M, Pipelzadeh M, Mardani H. The effectiveness of Viola odorata in the prevention and treatment of formalin-induced lung damage in the rat. J Herbs Spices Med Plants. 2003;10:95–103.

    Google Scholar 

  18. Anca T, Philippe V, Ilioara O, Mircea T. Composition of essential oils of Viola tricolor and V. arvensis from Romania. Chem Nat Compd. 2009;45:91–2.

    CAS  Google Scholar 

  19. Siddiqi HS, Mehmood MH, Rehman NU, Gilani AH. Studies on the antihypertensive and antidyslipidemic activities of Viola odorata leaves extract. Lipids Health Dis. 2012;11:6.

    PubMed  PubMed Central  Google Scholar 

  20. Ebrahimzadeh MA, Nabavi SM, Nabavi SF, Bahramian F, Bekhradnia AR. Antioxidant and free radical scavenging activity of H. officinalisL. var. angustifolius, V. odorata, B. hyrcana and C. speciosum. Pak J Pharm Sci. 2010;23:29–34.

    CAS  PubMed  Google Scholar 

  21. Gerlach SL, Rathinakumar R, Chakravarty G, Göransson U, Wimley WC, Darwin SP, Mondal D. Anticancer and chemosensitizing abilities of cycloviolacin O2 from Viola odorata and psyle cyclotides from Psychotria leptothyrsa. Pept Sci. 2010;94:617–25.

    CAS  Google Scholar 

  22. Lindholm P, Göransson U, Johansson S, Claeson P, Gullbo J, Larsson R, Bohlin L, Backlund A. Cyclotides: a novel type of cytotoxic agents 1 PL and UG contributed equally to this manuscript. Mol Cancer Ther. 2002;1:365–9.

    CAS  PubMed  Google Scholar 

  23. Saether O, Craik DJ, Campbell ID, Sletten K, Juul J, Norman DG. Elucidation of the primary and three-dimensional structure of the uterotonic polypeptide kalata B1. Biochemistry. 1995;34:4147–58.

    CAS  PubMed  Google Scholar 

  24. Svangård E, Burman R, Gunasekera S, Lövborg H, Gullbo J, Göransson U. Mechanism of action of cytotoxic cyclotides: cycloviolacin O2 disrupts lipid membranes. J Nat Prod. 2007;70:643–7.

    PubMed  Google Scholar 

  25. Duke JA. Handbook of medicinal herbs. Boca Raton: CRC Press; 2002.

    Google Scholar 

  26. Craik DJ. Host-defense activities of cyclotides. Toxins. 2012;4:139–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hu E, Wang D, Chen J, Tao X. Novel cyclotides from Hedyotis diffusa induce apoptosis and inhibit proliferation and migration of prostate cancer cells. Int J Clin Exper Med. 2015;8:4059.

    CAS  Google Scholar 

  28. Yang R, Qi J, Zhang J, Wang F, Fan L. Effects of Paris polyphylla saponin VII plus silica nano composite on ovarian cancer drug resistance in vitro. Zhonghua yi xue za zhi. 2015;95:1859–61.

    CAS  PubMed  Google Scholar 

  29. Zhang Y, Bao J, Wang K, Jia X, Zhang C, Huang B, Chen M, Wan J-B, Su H, Wang Y. Pulsatilla saponin D inhibits autophagic flux and synergistically enhances the anticancer activity of chemotherapeutic agents against hela cells. Am J Chin Med. 2015;43:1657–70.

    CAS  PubMed  Google Scholar 

  30. Zhao PJ, Song SC, Du LW, Zhou GH, Ma SL, Li JH, Feng JG, Zhu XH, Jiang H. Paris Saponins enhance radiosensitivity in a gefitinib-resistant lung adenocarcinoma cell line by inducing apoptosis and G2/M cell cycle phase arrest. Mol Med Rep. 2016;13:2878–84.

    CAS  PubMed  Google Scholar 

  31. Chen X-Y, Zhou J, Luo L-P, Han B, Li F, Chen J-Y, Zhu Y-F, Chen W, Yu X-P. Black rice anthocyanins suppress metastasis of breast cancer cells by targeting RAS/RAF/MAPK pathway. BioMed Res Int. 2015;2015:414250.

    PubMed  PubMed Central  Google Scholar 

  32. Li D, Wang P, Luo Y, Zhao M, Chen F. Health benefits of anthocyanins and molecular mechanisms: update from recent decade. Crit Rev Food Sci Nutr. 2017;57:1729–41.

    CAS  PubMed  Google Scholar 

  33. Ma R-J, Liu Z-H, Zi C-T, Gao W, Dong F-W, Yang L, Li J-Y, Zhou J, Hu J-M. Oleanane-type triterpene saponins from Hydrocotyle nepalensis. Fitoterapia. 2016;110:66–71.

    CAS  PubMed  Google Scholar 

  34. Plan MRR, Saska I, Cagauan AG, Craik DJ. Backbone cyclised peptides from plants show molluscicidal activity against the rice pest Pomacea canaliculata (golden apple snail). J Agric Food Chem. 2008;56:5237–41.

    CAS  PubMed  Google Scholar 

  35. Chandra D, Kohli G, Prasad K, Bisht G, Punetha VD, Khetwal K, Devrani MK, Pandey H. Phytochemical and ethnomedicinal uses of family Violaceae. Curr Res Chem. 2015;7:44–52.

    CAS  Google Scholar 

  36. Ediriweera MK, Tennekoon KH, Samarakoon SR, Thabrew I, Dilip De Silva E. A study of the potential anticancer activity of Mangifera zeylanica bark: evaluation of cytotoxic and apoptotic effects of the hexane extract and bioassay-guided fractionation to identify phytochemical constituents. Oncol Lett. 2016;11:1335–444.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Yousefnia S, Ghaedi K, Seyed Forootan F, Nasr Esfahani MH. Characterization of the stemness potency of mammospheres isolated from the breast cancer cell lines. Tumor Biol. 2019;41:1010428319869101.

    Google Scholar 

  38. Lombardo Y, de Giorgio A, Coombes CR, Stebbing J, Castellano L. Mammosphere formation assay from human breast cancer tissues and cell lines. J Vis Exp JoVE. 2015;97:e52671.

    Google Scholar 

  39. Cioce M, Gherardi S, Viglietto G, Strano S, Blandino G, Muti P, Ciliberto G. Mammosphere-forming cells from breast cancer cell lines as a tool for the identification of CSC-like-and early progenitor-targeting drugs. Cell Cycle. 2010;9:2950–9.

    Google Scholar 

  40. Wang R, Lv Q, Meng W, Tan Q, Zhang S, Mo X, Yang X. Comparison of mammosphere formation from breast cancer cell lines and primary breast tumors. J Thorac Dis. 2014;6:829.

    PubMed  PubMed Central  Google Scholar 

  41. Sadeghnia HR, Ghorbani Hesari T, Mortazavian SM, Mousavi SH, Tayarani-Najaran Z, Ghorbani A. Viola tricolor induces apoptosis in cancer cells and exhibits antiangiogenic activity on chicken chorioallantoic membrane. BioMed Res Int. 2014

  42. Vishal A, Parveen K, Pooja S, Kannappan N, Kumar S. Diuretic, laxative and toxicity Studies of Viola odorata aerial parts. Pharmacol Online. 2009;1:739–48.

    Google Scholar 

  43. Meyer VR. Practical high-performance liquid chromatography. New Jersey: Wiley; 2013.

    Google Scholar 

  44. Zhang LC, Jin X, Huang Z, Yan ZN, Li PB, Duan RF, Feng H, Jiang JH, Peng H, Liu W. Protective effects of choline against hypoxia-induced injuries of vessels and endothelial cells. Exp Ther Med. 2017;13:2316–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Yang T, Zhai H, Yan R, Zhou Z, Gao L, Wang L. lncRNA CCAT1 promotes cell proliferation, migration, and invasion by down-regulation of miR-143 in FTC-133 thyroid carcinoma cell line. Braz J Med Biol Res. 2018;51:e7046.

    PubMed  PubMed Central  Google Scholar 

  46. Horibata S, Vo TV, Subramanian V, Thompson PR, Coonrod SA. Utilization of the soft agar colony formation assay to identify inhibitors of tumorigenicity in breast cancer cells. JoVE. 2015;99:e52727.

    Google Scholar 

  47. Tufan AC, Satiroglu-Tufan NL. The chick embryo chorioallantoic membrane as a model system for the study of tumor angiogenesis, invasion and development of anti-angiogenic agents. Curr Cancer Drug Targets. 2005;5:249–66.

    CAS  PubMed  Google Scholar 

  48. Wang C, Yan Q, Hu M, Qin D, Feng Z. Effect of AURKA gene expression knockdown on angiogenesis and tumorigenesis of human ovarian cancer cell lines. Target oncol. 2016;11:771–81.

    CAS  PubMed  Google Scholar 

  49. Sys GM, Lapeire L, Stevens N, Favoreel H, Forsyth R, Bracke M, De Wever O. The in ovo CAM-assay as a xenograft model for sarcoma. J Vis Exp JoVE. 2013;77:e50522.

    Google Scholar 

  50. Lokman NA, Elder AS, Ricciardelli C, Oehler MK. Chick chorioallantoic membrane (CAM) assay as an in vivo model to study the effect of newly identified molecules on ovarian cancer invasion and metastasis. Int J Mol Sci. 2012;13:9959–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Chambers AF, Shafir R, Ling V. A model system for studying metastasis using the embryonic chick. Cancer Res. 1982;42:4018–25.

    CAS  PubMed  Google Scholar 

  52. Chang JHM, Lin CH, Shibu MA, Chou YC, Liu JY, Chou YH, Shen CY, Yeh YL, Viswanadha VP, Huang CY. Cryptotanshinone (Dsh-003) from Salvia miltiorrhiza Bunge inhibits prostaglandin E2-induced survival and invasion effects in HA22T hepatocellular carcinoma cells. Environ Toxicol. 2018;33:1254–60.

    CAS  PubMed  Google Scholar 

  53. Peng K-T, Chiang Y-C, Ko H-H, Chi P-L, Tsai C-L, Ko M-I, Lee M-H, Hsu L-F, Lee C-W. Mechanism of Lakoochin a inducing apoptosis of A375. S2 melanoma cells through mitochondrial ROS and MAPKs pathway. Int J Mol Sci. 2018;19:2649.

    PubMed Central  Google Scholar 

  54. Lu MC, Li TY, Hsieh YC, Hsieh PC, Chu YL. Chemical evaluation and cytotoxic mechanism investigation of Clinacanthus nutans extract in lymphoma SUP-T1 cells. Environ Toxicol. 2018;33:1229–366.

    CAS  PubMed  Google Scholar 

  55. Chang T-C, Chin Y-T, Nana AW, Wang S-H, Liao Y-M, Chen Y-R, Shih Y-J, Changou CA, Yang Y-CS, Wang K. Enhancement by nano-diamino-tetrac of antiproliferative action of Gefitinib on colorectal cancer cells: mediation by EGFR sialylation and PI3K activation. Horm Cancer. 2018;9:420–32.

    PubMed  PubMed Central  Google Scholar 

  56. Yao XJ, Lai H, Leung E, Liu L, Wang Y, Li Y, Jiang Z, Duan F, Luo LX. Krukovine suppresses KRAS-mutated lung cancer cell growth and proliferation by inhibiting the RAF-ERK pathway and inactivating AKT. Front Pharmacol. 2018;9:958.

    PubMed  PubMed Central  Google Scholar 

  57. Alessandra-Perini J, Perini JA, Rodrigues-Baptista KC, de Moura RS, Junior AP, dos Santos TA, Souza PJC, Nasciutti LE, Machado DE. Euterpe oleracea extract inhibits tumorigenesis effect of the chemical carcinogen DMBA in breast experimental cancer. BMC Complement Altern Med. 2018;18:116.

    PubMed  PubMed Central  Google Scholar 

  58. Koh RY, Lim FP, Ling LSY, Ng CPL, Liew SF, Yew MY, Tiong YL, Ling APK, Chye SM, Ng KY. Anticancer mechanisms of Strobilanthes crispa Blume hexane extract on liver and breast cancer cell lines. Oncol Lett. 2017;14:4957–64.

    PubMed  PubMed Central  Google Scholar 

  59. Yi X, Zuo J, Tan C, Xian S, Luo C, Chen S, Yu L, Luo Y. Kaempferol, a flavonoid compound from Gynura medica induced apoptosis and growth inhibition in MCF-7 breast cancer cell. Afr J Tradit Complement Altern Med. 2016;13:210–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Nguyen LT, Lee Y-H, Sharma AR, Park J-B, Jagga S, Sharma G, Lee S-S, Nam J-S. Quercetin induces apoptosis and cell cycle arrest in triple-negative breast cancer cells through modulation of Foxo3a activity. Korean J Physiol Pharmacol. 2017;21:205–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Palko-Labuz A, Sroda-Pomianek K, Uryga A, Kostrzewa-Suslow E, Michalak K. Anticancer activity of baicalein and luteolin studied in colorectal adenocarcinoma LoVo cells and in drug-resistant LoVo/Dx cells. Biomed Pharmacother. 2017;88:232–41.

    CAS  PubMed  Google Scholar 

  62. Talero E, García-Mauriño S, Ávila-Román J, Rodríguez-Luna A, Alcaide A, Motilva V. Bioactive compounds isolated from microalgae in chronic inflammation and cancer. Mar Drugs. 2015;13:6152–209.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Jabeen A, Reeder B, Hisaindee S, Ashraf S, Al Darmaki N, Battah S, Al-Zuhair S. Effect of enzymatic pre-treatment of microalgae extracts on their anti-tumor activity. Biomed J. 2017;40:339–46.

    PubMed  Google Scholar 

  64. Lee SY, Ju MK, Jeon HM, Jeong EK, Lee YJ, Kim CH, Park HG, Han SI, Kang HS. Regulation of tumor progression by programmed necrosis. Oxid Med Cell Longev. 2018

  65. Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N. Crosstalk between apoptosis, necrosis and autophagy. Biochimica et Biophysica Acta (BBA). Mol Cell Res. 2013;1833:3448–599.

    CAS  Google Scholar 

  66. Wu T, Cui H, Xu Y, Du Q, Zhao E, Cao J, Nie L, Fu G, Ren A. The effect of tubeimoside-1 on the proliferation, metastasis and apoptosis of oral squamous cell carcinoma in vitro. OncoTargets Ther. 2018;11:3989.

    Google Scholar 

  67. Kang HM, Park BS, Kang HK, Park HR, Yu SB, Kim IR. Delphinidin induces apoptosis and inhibits epithelial-to-mesenchymal transition via the ERK/p38 MAPK-signaling pathway in human osteosarcoma cell lines. Environ Toxicol. 2018;33:640–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhou J, Zhu Y-F, Chen X-Y, Han B, Li F, Chen J-Y, Peng X-L, Luo L-P, Chen W, Yu X-P. Black rice-derived anthocyanins inhibit HER-2-positive breast cancer epithelial-mesenchymal transition-mediated metastasis in vitro by suppressing FAK signaling. Int J Mol Med. 2017;40:1649–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Li S, Yan T, Deng R, Jiang X, Xiong H, Wang Y, Yu Q, Wang X, Chen C, Zhu Y. Low dose of kaempferol suppresses the migration and invasion of triple-negative breast cancer cells by downregulating the activities of RhoA and Rac1. OncoTargets Ther. 2017;10:4809.

    Google Scholar 

  70. Qian Y, Han Q-H, Wang L-C, Guo Q, Wang X-D, Tu P-F, Zeng K-W, Liang H. Total saponins of Albiziae Cortex show anti-hepatoma carcinoma effects by inducing S phase arrest and mitochondrial apoptosis pathway activation. J Ethnopharmacol. 2018;221:20–9.

    CAS  PubMed  Google Scholar 

  71. Charepalli V, Reddivari L, Vadde R, Walia S, Radhakrishnan S, Vanamala JK. Eugenia jambolana (Java plum) fruit extract exhibits anti-cancer activity against early stage human HCT-116 colon cancer cells and colon cancer stem cells. Cancers. 2016;8:29.

    PubMed Central  Google Scholar 

  72. Nair HK, Rao KV, Aalinkeel R, Mahajan S, Chawda R, Schwartz SA. Inhibition of prostate cancer cell colony formation by the flavonoid quercetin correlates with modulation of specific regulatory genes. Clin Diagn Lab Immunol. 2004;11:63–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Abdal Dayem A, Choi HY, Yang G-M, Kim K, Saha SK, Cho S-G. The anti-cancer effect of polyphenols against breast cancer and cancer stem cells: molecular mechanisms. Nutrients. 2016;8:581.

    PubMed Central  Google Scholar 

  74. Chen D, Pamu S, Cui Q, Chan TH, Dou QP. Novel epigallocatechin gallate (EGCG) analogs activate AMP-activated protein kinase pathway and target cancer stem cells. Bioorg Med Chem. 2012;20:3031–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Dandawate PR, Subramaniam D, Jensen RA, Anant S. Targeting cancer stem cells and signaling pathways by phytochemicals: novel approach for breast cancer therapy. In Seminars in cancer biology. 2016; 40. pp. 192–208 (Elsevier).

  76. Manupati K, Dhoke NR, Debnath T, Yeeravalli R, Guguloth K, Saeidpour S, De UC, Debnath S, Das A. Inhibiting epidermal growth factor receptor signalling potentiates mesenchymal–epithelial transition of breast cancer stem cells and their responsiveness to anticancer drugs. FEBS J. 2017;284:1830–54.

    CAS  PubMed  Google Scholar 

  77. Sandoval TA, Urueña CP, Llano M, Gómez-Cadena A, Hernández JF, Sequeda LG, Loaiza AE, Barreto A, Li S, Fiorentino S. Standardized extract from Caesalpinia spinosa is cytotoxic over cancer stem cells and enhance anticancer activity of doxorubicin. Am J Chin Med. 2016;44:1693–717.

    CAS  PubMed  Google Scholar 

  78. Sotillo WS, Villagomez R, Smiljanic S, Huang X, Malakpour A, Kempengren S, Rodrigo G, Almanza G, Sterner O, Oredsson S. Anti-cancer stem cell activity of a sesquiterpene lactone isolated from Ambrosia arborescens and of a synthetic derivative. PLoS ONE. 2017;12:e0184304.

    PubMed  PubMed Central  Google Scholar 

  79. Woo Y, Oh J, Kim J-S. Suppression of Nrf2 activity by chestnut leaf extract increases chemosensitivity of breast cancer stem cells to paclitaxel. Nutrients. 2017;9:760.

    PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank our great colleague Mr. Abbas Kiani Esfahani for his technical assistance on flow cytometry. Also, we thank Goldaru Company, for the gift-giving alcoholic Viola odorata extract.

Funding

This project was supported by the Goldaru company to approve the anti-cancerous effects of Viola odorata extract. This project was funded by a grant-in-aid of research from Iran National Science Foundation (Award no. 93021399) to K. G., as the Principal Investigator.

Author information

Authors and Affiliations

Authors

Contributions

SY: designing research studies, conducting experiments, acquiring data, analyzing data, providing reagents, and writing the manuscript. DN: designing research studies, conducting experiments, data interpretation. FSF: designing research studies, data interpretation, manuscript writing, and final approval of the manuscript. MT: data interpretation, conducting experiments. FM: data interpretation, conducting experiments. TG: data interpretation, conducting experiments. MHNE: designing research studies, data interpretation, manuscript writing, and final approval of the manuscript. KG: designing research studies, data interpretation, manuscript writing, and final approval of the manuscript.

Corresponding authors

Correspondence to F. Seyed Forootan or K. Ghaedi.

Ethics declarations

Conflict of interest

No conflict of interest.

Research involving human participants and/or animals

The permission to use chicken embryo based on the standard protocols was obtained by Ethics Committee of Royan Institute (The permission to use chick embryo based on the standard protocols was obtained by Ethics Committee of Royan Institute (Project no. IR ACECR ROYAN REC IR ACECR ROYAN REC).

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousefnia, S., Naseri, D., Seyed Forootan, F. et al. Suppressive role of Viola odorata extract on malignant characters of mammosphere-derived breast cancer stem cells . Clin Transl Oncol 22, 1619–1634 (2020). https://doi.org/10.1007/s12094-020-02307-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-020-02307-9

Keywords

Navigation