Skip to main content
Log in

Human colorectal cancer derived-MSCs promote tumor cells escape from senescence via P53/P21 pathway

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to evaluate effect of MSCs on CRC cell.

Methods

in this study the MSC was isolated from CRC tissue, its effect on CRC cells was investigated in vivo and vitro, and the underlying mechanism was investigated.

Results

In this study we found that MSC-CM could promote colorectal cancer cells escape from senescence both in vitro and in vivo. Further research we demonstrated that MSC-CM acted in colorectal cancer cells senescence through P53/P21 pathway. Next we found that MSC-CM regulate P53 via posttranscription method.

Conclusion

Collectively, these results reveal that MSCs can help colorectal cancer cells defend against senescence through P53/P21 pathway, which may be a new strategy for colorectal cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CRC:

Colorectal cancer

MSC:

Mesenchymal stem cells

References

  1. Villalobos C, Sobradillo D, Hernandez-Morales M, Nunez L. Calcium remodeling in colorectal cancer. Biochim Biophys Acta. 2017;1864(6):843–9.

    Article  CAS  Google Scholar 

  2. Shi Y, Du L, Lin L, Wang Y. Tumour-associated mesenchymal stem/stromal cells: emerging therapeutic targets. Nat Rev Drug Discov. 2017;16(1):35–52.

    Article  CAS  Google Scholar 

  3. Melzer C, Yang Y, Hass R. Interaction of MSC with tumor cells. Cell Commun Signal. 2016;14(1):20.

    Article  Google Scholar 

  4. Ferraro GA, De Francesco F, Nicoletti G, Paino F, Desiderio V, Tirino V, D’Andrea F. Human adipose CD34 + CD90 + stem cells and collagen scaffold constructs grafted in vivo fabricate loose connective and adipose tissues. J Cell Biochem. 2013;114(5):1039–49.

    Article  CAS  Google Scholar 

  5. Dvorak HF. Tumors: wounds that do not heal similarities between tumor stroma generation and wound healing. N Engl J Med. 1986;315(26):1650–9.

    Article  CAS  Google Scholar 

  6. Dong L, Pu Y, Zhang L, Qi Q, Xu L, Li W, Wei C, Wang X, Zhou S, Zhu J, et al. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles promote lung adenocarcinoma growth by transferring miR-410. Cell Death Discov. 2018;9(2):218.

    Article  Google Scholar 

  7. Li W, Zhou Y, Yang J, Zhang X, Zhang H, Zhang T, Zhao S, Zheng P, Huo J, Wu H. Gastric cancer-derived mesenchymal stem cells prompt gastric cancer progression through secretion of interleukin-8. J Exp Clin Cancer Res. 2015;34:52.

    Article  CAS  Google Scholar 

  8. Wang J, Wang Y, Wang S, Cai J, Shi J, Sui X, Cao Y, Huang W, Chen X, Cai Z, et al. Bone marrow-derived mesenchymal stem cell-secreted IL-8 promotes the angiogenesis and growth of colorectal cancer. Oncotarget. 2015;6(40):42825–37.

    PubMed  PubMed Central  Google Scholar 

  9. Koliaraki V, Pallangyo CK, Greten FR, Kollias G. Mesenchymal cells in colon cancer. Gastroenterology. 2017;152(5):964–79.

    Article  CAS  Google Scholar 

  10. Ohtani N, Mann DJ, Hara E. Cellular senescence: its role in tumor suppression and aging. Cancer Sci. 2009;100(5):792–7.

    Article  CAS  Google Scholar 

  11. Toso A, Revandkar A, Di Mitri D, Guccini I, Proietti M, Sarti M, Pinton S, Zhang J, Kalathur M, Civenni G, et al. Enhancing chemotherapy efficacy in Pten-deficient prostate tumors by activating the senescence-associated antitumor immunity. Cell Rep. 2014;9(1):75–89.

    Article  CAS  Google Scholar 

  12. Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L, Newman J, Reczek EE, Weissleder R, Jacks T. Restoration of p53 function leads to tumour regression in vivo. Nature. 2007;445(7128):661–5.

    Article  CAS  Google Scholar 

  13. Rakhra K, Bachireddy P, Zabuawala T, Zeiser R, Xu L, Kopelman A, Fan AC, Yang Q, Braunstein L, Crosby E, et al. CD4(+) T cells contribute to the remodeling of the microenvironment required for sustained tumor regression upon oncogene inactivation. Cancer Cell. 2010;18(5):485–98.

    Article  CAS  Google Scholar 

  14. Le Blanc K, Ringden O. Immunobiology of human mesenchymal stem cells and future use in hematopoietic stem cell transplantation. Biol Blood Marrow Transpl. 2005;11(5):321–34.

    Article  Google Scholar 

  15. Harris DT. Cord blood stem cells: a review of potential neurological applications. Stem Cell Rev. 2008;4(4):269–74.

    Article  Google Scholar 

  16. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.

    Article  CAS  Google Scholar 

  17. Wakitani S, Saito T, Caplan AI. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve. 1995;18(12):1417–26.

    Article  CAS  Google Scholar 

  18. Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA. 1999;96(19):10711–6.

    Article  CAS  Google Scholar 

  19. Ferraro GA, De Francesco F, Nicoletti G, Paino F, Desiderio V, Tirino V, D’Andrea F. Human adipose CD34 + CD90 + stem cells and collagen scaffold constructs grafted in vivo fabricate loose connective and adipose tissues. J Cell Biochem. 2013;114(5):1039–49.

    Article  CAS  Google Scholar 

  20. Bayati V, Hashemitabar M, Gazor R, Nejatbakhsh R, Bijannejad D. Expression of surface markers and myogenic potential of rat bone marrow- and adipose-derived stem cells: a comparative study. Anat Cell Biol. 2013;46(2):113–21.

    Article  Google Scholar 

  21. Lazennec G, Jorgensen C. Concise review: adult multipotent stromal cells and cancer: risk or benefit? Stem Cells. 2008;26(6):1387–94.

    Article  CAS  Google Scholar 

  22. Hossain A, Gumin J, Gao F, Figueroa J, Shinojima N, Takezaki T, Priebe W, Villarreal D, Kang SG, Joyce C, et al. Mesenchymal stem cells isolated from human gliomas increase proliferation and maintain stemness of glioma stem cells through the IL-6/gp130/STAT3 pathway. Stem Cells. 2015;33(8):2400–15.

    Article  CAS  Google Scholar 

  23. Li W, Zhou Y, Yang J, Zhang X, Zhang H, Zhang T, Zhao S, Zheng P, Huo J, Wu H. Gastric cancer-derived mesenchymal stem cells prompt gastric cancer progression through secretion of interleukin-8. J Exp Clin Cancer Res. 2015;34:52.

    Article  CAS  Google Scholar 

  24. Dong L, Pu Y, Zhang L, Qi Q, Xu L, Li W, Wei C, Wang X, Zhou S, Zhu J, et al. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles promote lung adenocarcinoma growth by transferring miR-410. Cell Death Dis. 2018;9(2):218.

    Article  Google Scholar 

  25. Zhang X, Hu F, Li G, Li G, Yang X, Liu L, Zhang R, Zhang B, Feng Y. Human colorectal cancer-derived mesenchymal stem cells promote colorectal cancer progression through IL-6/JAK2/STAT3 signaling. Cell Death Dis. 2018;9(2):25.

    Article  Google Scholar 

  26. Zheng Y, Wang G, Chen R, Hua Y, Cai Z. Mesenchymal stem cells in the osteosarcoma microenvironment: their biological properties, influence on tumor growth, and therapeutic implications. Stem Cell Res Ther. 2018;9(1):22.

    Article  Google Scholar 

  27. Wang G, Fu Y, Hu F, Lan J, Xu F, Yang X, Luo X, Wang J, Hu J. Loss of BRG1 induces CRC cell senescence by regulating p53/p21 pathway. Cell Death Dis. 2017;8(2):e2607.

    Article  CAS  Google Scholar 

  28. Anwar T, Khosla S, Ramakrishna G. Increased expression of SIRT2 is a novel marker of cellular senescence and is dependent on wild type p53 status. Cell Cycle. 2016;15(14):1883–97.

    Article  CAS  Google Scholar 

  29. Stein GH, Drullinger LF, Soulard A, Dulic V. Differential roles for cyclin-dependent kinase inhibitors p21 and p16 in the mechanisms of senescence and differentiation in human fibroblasts. Mol Cell Biol. 1999;19(3):2109–17.

    Article  CAS  Google Scholar 

  30. Dabrowski FA, Burdzinska A, Kulesza A, Sladowska A, Zolocinska A, Gala K, Paczek L, Wielgos M. Comparison of the paracrine activity of mesenchymal stem cells derived from human umbilical cord, amniotic membrane and adipose tissue. J Obstet Gynaecol Res. 2017;43(11):1758–68.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Sciences Foundation of China (no. 81372323 to Y.F.).

Author information

Authors and Affiliations

Authors

Contributions

GL contributed to the conception and design of the study; RZ, FH, GL and SS contributed to data collection; GL wrote the paper; All authors revised the paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Y. Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Consent for publication

The manuscript has been read and approved in the present form for submission by all named authors.

Ethics approval and consent to participate

This project got the permission of the patients and was approved by the ethics committee of The Tongji Hospital of Huazhong University of Science and Technology.

Human and animal rights statement

All procedures performed in the studies involving human participants were in accordance with 1964 Helsinki declaration and its later amendments or comparable ethical standards. Animal experiment were used under conditions approved by The Tongji Hospital of Huazhong University of Science and Technology.

Informed consent

All participants provided informed consent prior to their participation.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Zhang, R., Zhang, X. et al. Human colorectal cancer derived-MSCs promote tumor cells escape from senescence via P53/P21 pathway. Clin Transl Oncol 22, 503–511 (2020). https://doi.org/10.1007/s12094-019-02152-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-019-02152-5

Keywords

Navigation