Skip to main content

Advertisement

Log in

Bypassing cellular senescence by genetic screening tools

  • Educational Series
  • Current Technology in Cancer Research and Treatment
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Bypassing cellular senescence is a prerequisite step in the tumorigenic transformation. It has long been known that loss of a key tumour suppressor gene, such as p53 or pRB, is necessary but not sufficient for spontaneous cellular immortalisation. Therefore, there must be additional mutations and/or epigenetic alterations required for immortalisation to occur. Early work on these processes included somatic-cell genetic studies to estimate the number of senescence genes and nowadays are completed by in vivo models and with the requirements to bypass senescence induced by oncogenic transformation in stem cells. These principal studies laid the foundation for the field of senescence/immortalisation but were labour intensive and the results were somewhat limited. Using retroviral-based functional genetic screening, we and others identified universal genes regulating senescence/immortalisation (either by gain or loss of function) and found that some of these genes are widely altered in human tumours. We also explored the molecular mechanisms throughout these genes that regulate senescence and established the causality of the genetic alteration in tumorigenesis. The identification of genes and pathways regulating senescence/immortalisation could provide novel molecular targets for the treatment and/or prevention of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Carnero A, Link W, Martinez JF et al (2003) Cellular senescence and cancer. Res Adv Cancer 3:183–198

    Google Scholar 

  2. Busuttil RA, Dolle M, Campisi J et al (2004) Genomic instability, aging, and cellular senescence. Ann N Y Acad Sci 1019:245–255

    Article  CAS  PubMed  Google Scholar 

  3. Campisi J (2001) Cellular senescence as a tumorsuppressor mechanism. Trends Cell Biol 11:S27–S31

    CAS  PubMed  Google Scholar 

  4. Campisi J (2005) Suppressing cancer: the importance of being senescent. Science 309:886–887

    Article  CAS  PubMed  Google Scholar 

  5. Collado M, Serrano M (2006) The power and the promise of oncogene-induced senescence markers. Nat Rev Cancer 6:472–476

    Article  CAS  PubMed  Google Scholar 

  6. Evan GI, Christophorou M, Lawlor EA et al (2005) Oncogene-dependent tumor suppression: using the dark side of the force for cancer therapy. Cold Spring Harb Symp Quant Biol 70:263–273

    Article  CAS  PubMed  Google Scholar 

  7. Banito A, Rashid ST, Acosta JC et al (2009) Senescence impairs successful reprogramming to pluripotent stem cells. Genes Dev 23:2134–2139

    Article  CAS  PubMed  Google Scholar 

  8. Li H, Collado M, Villasante A et al (2009) The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature 460:1136–1139

    Article  CAS  PubMed  Google Scholar 

  9. Marion RM, Strati K, Li H et al (2009) A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature 460:1149–1153

    Article  CAS  PubMed  Google Scholar 

  10. Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37:614–636

    Article  CAS  PubMed  Google Scholar 

  11. Dimri GP, Lee X, Basile G et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 92:9363–9367

    Article  CAS  PubMed  Google Scholar 

  12. Coates PJ (2002) Markers of senescence? J Pathol 196:371–373

    Article  PubMed  Google Scholar 

  13. Wright WE and Shay JW (1992) The two-stage mechanism controlling cellular senescence and immortalization. Exp Gerontol 27:383–389

    Article  CAS  PubMed  Google Scholar 

  14. Berube NG, Smith JR, and Pereira-Smith OM (1998) The genetics of cellular senescence. Am J Hum Genet 62:1015–1019

    Article  CAS  PubMed  Google Scholar 

  15. Suzuki T, Shiratori M, Furuichi Y et al (2001) Diverged nuclear localization of Werner helicase in human and mouse cells. Oncogene 20:2551–258

    Article  CAS  PubMed  Google Scholar 

  16. d’Adda di Fagagna F (2008) Living on a break: cellular senescence as a DNA-damage response. Nat Rev Cancer 8:512–522

    Article  PubMed  Google Scholar 

  17. Ruiz L, Traskine M, Ferrer I et al (2008) Characterization of the p53 response to oncogene-induced senescence. PLoS ONE 3:e3230

    Article  PubMed  Google Scholar 

  18. d’Adda di Fagagna F, Reaper PM, Clay-Farrace L et al (2003) A DNA damage checkpoint response in telomere-initiated senescence. Nature 426:194–198

    Article  PubMed  Google Scholar 

  19. Cristofalo VJ and Pignolo RJ (1993) Replicative senescence of human fibroblast-like cells in culture. Physiol Rev 73:617–638

    CAS  PubMed  Google Scholar 

  20. Cong YS, Wright WE, Shay JW (2002) Human telomerase and its regulation. Microbiol Mol Biol Rev 66:407–425

    Article  CAS  PubMed  Google Scholar 

  21. Bodnar AG, Ouellette M, Frolkis M et al (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279:349–352

    Article  CAS  PubMed  Google Scholar 

  22. Poyatos JF and Carnero A (2004) Non-neutral role of replicative senescence in tissue homeostasis and tumorigenesis. J Theor Biol 230:333–341

    Article  CAS  PubMed  Google Scholar 

  23. Serrano M, Lin AW, McCurrach ME et al (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88:593–602

    Article  CAS  PubMed  Google Scholar 

  24. Lin AW, Barradas M, Stone JC et al (1998) Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev 12:3008–3019

    Article  CAS  PubMed  Google Scholar 

  25. Serrano M, Blasco MA (2001) Putting the stress on senescence. Curr Opin Cell Biol 13:748–753

    Article  CAS  PubMed  Google Scholar 

  26. Shay JW, Roninson IB (2004) Hallmarks of senescence in carcinogenesis and cancer therapy. Oncogene 23:2919–2933

    Article  CAS  PubMed  Google Scholar 

  27. Ruzankina Y, Asare A, Brown EJ (2008) Replicative stress, stem cells and aging. Mech Ageing Dev 129:460–466

    Article  CAS  PubMed  Google Scholar 

  28. Bartek J, Bartkova J, Lukas J (2007) DNA damage signalling guards against activated oncogenes and tumour progression. Oncogene 26:7773–7779

    Article  CAS  PubMed  Google Scholar 

  29. Kenyon J and Gerson SL (2007) The role of DNA damage repair in aging of adult stem cells. Nucleic Acids Res 35:7557–7565

    Article  CAS  PubMed  Google Scholar 

  30. Di Micco R, Fumagalli M, Cicalese A et al (2006) Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444:638–342

    Article  PubMed  Google Scholar 

  31. Passos JF and Von Zglinicki T (2006) Oxygen free radicals in cell senescence: are they signal transducers? Free Radic Res 40:1277–1283

    Article  CAS  PubMed  Google Scholar 

  32. Parrinello S, Samper E, Krtolica A et al (2003) Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat Cell Biol 5:741–747

    Article  CAS  PubMed  Google Scholar 

  33. Malumbres M, Carnero A (2003) Cell cycle deregulation: a common motif in cancer. Prog Cell Cycle Res 5:5–18

    PubMed  Google Scholar 

  34. Braig M, Lee S, Loddenkemper C et al (2005) Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436:660–665

    Article  CAS  PubMed  Google Scholar 

  35. Michaloglou C, Vredeveld LC, Soengas MS et al (2005) BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436:720–724

    Article  CAS  PubMed  Google Scholar 

  36. Chen Z, Trotman LC, Shaffer D et al (2005) Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436:725–730

    Article  CAS  PubMed  Google Scholar 

  37. Lazzerini Denchi E, Attwooll C, Pasini D et al (2005) Deregulated E2F activity induces hyperplasia and senescence-like features in the mouse pituitary gland. Mol Cell Biol 25:2660–2672

    Article  PubMed  Google Scholar 

  38. Bennett DC (2003) Human melanocyte senescence and melanoma susceptibility genes. Oncogene 22:3063–3069

    Article  CAS  PubMed  Google Scholar 

  39. Gray-Schopfer VC, Cheong SC, Chong H et al (2006) Cellular senescence in naevi and immortalisation in melanoma: a role for p16? Br J Cancer 95:496–505

    Article  CAS  PubMed  Google Scholar 

  40. Roninson IB (2002) Tumor senescence as a determinant of drug response in vivo. Drug Resist Updat 5:204–208

    Article  CAS  PubMed  Google Scholar 

  41. Campisi J and d’Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8:729–740

    Article  CAS  PubMed  Google Scholar 

  42. Schmitt CA (2007) Cellular senescence and cancer treatment. Biochim Biophys Acta 1775:5–20

    CAS  PubMed  Google Scholar 

  43. Schmitt CA, Fridman JS, Yang M et al (2002) A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 109:335–346

    Article  CAS  PubMed  Google Scholar 

  44. Blanco-Aparicio C, Canamero M, Cecilia Y et al (2010) Exploring the gain of function contribution of AKT to mammary tumorigenesis in mouse models. PLoS ONE 5:e9305

    Article  PubMed  Google Scholar 

  45. Jacobs JJ, de Lange T (2005) p16INK4a as a second effector of the telomere damage pathway. Cell Cycle 4:1364–1368

    CAS  PubMed  Google Scholar 

  46. Ohtani N, Yamakoshi K, Takahashi A et al (2004) The p16INK4a-RB pathway: molecular link between cellular senescence and tumor suppression. J Med Invest 51:146–153

    Article  PubMed  Google Scholar 

  47. Ventura A, Kirsch DG, McLaughlin ME et al (2007) Restoration of p53 function leads to tumour regression in vivo. Nature 445:661–665

    Article  CAS  PubMed  Google Scholar 

  48. Xue W, Zender L, Miething C et al (2007) Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445:656–660

    Article  CAS  PubMed  Google Scholar 

  49. Castro ME, del Valle Guijarro M, Moneo V et al (2004) Cellular senescence induced by p53-ras cooperation is independent of p21waf1 in murine embryo fibroblasts. J Cell Biochem 92:514–524

    Article  CAS  PubMed  Google Scholar 

  50. Poole JC, Thain A, Perkins ND et al (2004) Induction of transcription by p21Waf1/Cip1/Sdi1: role of NFkappaB and effect of non-steroidal antiinflammatory drugs. Cell Cycle 3:931–940

    CAS  PubMed  Google Scholar 

  51. Smith JR and Pereira-Smith OM (1996) Replicative senescence: implications for in vivo aging and tumor suppression. Science 273:63–67

    Article  CAS  PubMed  Google Scholar 

  52. Duncan EL, Whitaker NJ, Moy EL et al (1993) Assignment of SV40-immortalized cells to more than one complementation group for immortalization. Exp Cell Res 205:337–344

    Article  CAS  PubMed  Google Scholar 

  53. Sasaki M, Honda T, Yamada H et al (1994) Evidence for multiple pathways to cellular senescence. Cancer Res 54:6090–6093

    CAS  PubMed  Google Scholar 

  54. Barrett JC, Annab LA, Alcorta D et al (1994) Cellular senescence and cancer. Cold Spring Harb Symp Quant Biol 59:411–418

    CAS  PubMed  Google Scholar 

  55. Morelli C, Magnanini C, Mungall AJ et al (2000) Cloning and characterization of two overlapping genes in a subregion at 6q21 involved in replicative senescence and schizophrenia. Gene 252:217–225

    Article  CAS  PubMed  Google Scholar 

  56. Bertram MJ, Berube NG, Swanson XH et al (1999) Assembly of a BAC contig of the complementation group B cell senescence gene candidate region at 4q33–q34.1 and identification of expressed sequences. Genomics 56:353–354

    Article  CAS  PubMed  Google Scholar 

  57. Collado M and Serrano M (2005) The senescent side of tumor suppression. Cell Cycle 4:1722–1724

    CAS  PubMed  Google Scholar 

  58. Serrano M (2003) Proliferation: the cell cycle. Adv Exp Med Biol 532:13–17

    CAS  PubMed  Google Scholar 

  59. Campisi J (2001) From cells to organisms: can we learn about aging from cells in culture? Exp Gerontol 36:607–618

    Article  CAS  PubMed  Google Scholar 

  60. Castro ME, Ferrer I, Cascon A et al (2008) PPP1-CA contributes to the senescence program induced by oncogenic Ras. Carcinogenesis 29:491–499

    Article  CAS  PubMed  Google Scholar 

  61. Leal JF, Ferrer I, Blanco-Aparicio C et al (2008) S-adenosylhomocysteine hydrolase downregulation contributes to tumorigenesis. Carcinogenesis 29:2089–2095

    Article  CAS  PubMed  Google Scholar 

  62. ME LL, Vidal F, Gallardo D et al (2006) New p53 related genes in human tumors: significant downregulation in colon and lung carcinomas. Oncol Rep 16:603–608

    Google Scholar 

  63. Leal JF, Fominaya J, Cascon A et al (2008) Cellular senescence bypass screen identifies new putative tumor suppressor genes. Oncogene 27:1961–1970

    Article  CAS  PubMed  Google Scholar 

  64. Kondoh H, Lleonart ME, Gil J et al (2005) Glycolytic enzymes can modulate cellular life span. Cancer Res 65:177–185

    CAS  PubMed  Google Scholar 

  65. Fridman AL, Rosati R, Li Q et al (2007) Epigenetic and functional analysis of IGFBP3 and IGFBPrP1 in cellular immortalization. Biochem Biophys Res Commun 357:785–791

    Article  CAS  PubMed  Google Scholar 

  66. Kortlever RM, Bernards R (2006) Senescence, wound healing and cancer: the PAI-1 connection. Cell Cycle 5:2697–2703

    CAS  PubMed  Google Scholar 

  67. Kortlever RM, Higgins PJ, Bernards R (2006) Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence. Nat Cell Biol 8:877–884

    Article  CAS  PubMed  Google Scholar 

  68. Wang W, Chen JX, Liao R et al (2002) Sequential activation of the MEK-extracellular signal-regulated kinase and MKK3/6-p38 mitogen-activated protein kinase pathways mediates oncogenic rasinduced premature senescence. Mol Cell Biol 22:3389–3403

    Article  PubMed  Google Scholar 

  69. Haq R, Brenton JD, Takahashi M et al (2002) Constitutive p38HOG mitogen-activated protein kinase activation induces permanent cell cycle arrest and senescence. Cancer Res 62:5076–5082

    CAS  PubMed  Google Scholar 

  70. Zhang H and Cohen SN (2004) Smurf2 up-regulation activates telomere-dependent senescence. Genes Dev 18:3028–3040

    Article  CAS  PubMed  Google Scholar 

  71. Shibanuma M, Mochizuki E, Maniwa R et al (1997) Induction of senescence-like phenotypes by forced expression of hic-5, which encodes a novel LIM motif protein, in immortalized human fibroblasts. Mol Cell Biol 17:1224–1235

    CAS  PubMed  Google Scholar 

  72. Baylin SB, Belinsky SA, and Herman JG (2000) Aberrant methylation of gene promoters in cancer—concepts, misconcepts, and promise. J Natl Cancer Inst 92:1460–1461

    Article  CAS  PubMed  Google Scholar 

  73. Esteller M, Cordon-Cardo C, Corn PG et al (2001) p14ARF silencing by promoter hypermethylation mediates abnormal intracellular localization of MDM2. Cancer Res 61:2816–2821

    CAS  PubMed  Google Scholar 

  74. Brummelkamp TR, Berns K, Hijmans EM et al (2004) Functional identification of cancer-relevant genes through large-scale RNA interference screens in mammalian cells. Cold Spring Harb Symp Quant Biol 69:439–445

    Article  CAS  PubMed  Google Scholar 

  75. Carnero A, Blanco-Aparicio C, Renner O et al (2008) The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Curr Cancer Drug Targets 8:187–198

    Article  CAS  PubMed  Google Scholar 

  76. Mayo LD and Donner DB (2001) A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci U S A 98:11598–11603

    Article  CAS  PubMed  Google Scholar 

  77. Carnero A (2010) The PKB/AKT pathway in cancer. Curr Pharm Des 16:34–44

    Article  CAS  PubMed  Google Scholar 

  78. Tran H, Brunet A, Griffith EC et al (2003) The many forks in FOXO’s road. Sci STKE 172:RE5

    Google Scholar 

  79. Lam EW, Francis RE, Petkovic M (2006) FOXO transcription factors: key regulators of cell fate. Biochem Soc Trans 34:722–726

    Article  CAS  PubMed  Google Scholar 

  80. Zhou BP, Liao Y, Xia W et al (2001) HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat Cell Biol 3:973–982

    Article  CAS  PubMed  Google Scholar 

  81. Zanella F, Link W, Carnero A (2010) Understanding FOXO, new views on old transcription factors. Curr Cancer Drug Targets 10(2):135–146

    Article  CAS  PubMed  Google Scholar 

  82. Collado M, Medema RH, Garcia-Cao I et al (2000) Inhibition of the phosphoinositide 3-kinase pathway induces a senescence-like arrest mediated by p27Kip1. J Biol Chem 275:21960–12968

    Article  CAS  PubMed  Google Scholar 

  83. Lorenzini A, Tresini M, Mawal-Dewan M et al (2002) Role of the Raf/MEK/ERK and the PI3K/Akt (PKB) pathways in fibroblast senescence. Exp Gerontol 37:1149–1156

    Article  CAS  PubMed  Google Scholar 

  84. Renner O, Blanco-Aparicio C, Carnero A (2008) Genetic modelling of the PTEN/AKT pathway in cancer research. Clin Transl Oncol 10:618–627

    Article  CAS  PubMed  Google Scholar 

  85. Blanco-Aparicio C, Perez-Gallego L, Pequeno B et al (2007) Mice expressing myrAKT1 in the mammary gland develop carcinogen-induced ER-positive mammary tumors that mimic human breast cancer. Carcinogenesis 28:584–594

    Article  CAS  PubMed  Google Scholar 

  86. Blanco-Aparicio C, Renner O, Leal JF et al (2007) PTEN, more than the AKT pathway. Carcinogenesis 28:1379–1386

    Article  CAS  PubMed  Google Scholar 

  87. Renner O, Fominaya J, Alonso S et al (2007) Mst1, RanBP2 and eIF4G are new markers for in vivo PI3K activation in murine and human prostate. Carcinogenesis 28:1418–1425

    Article  CAS  PubMed  Google Scholar 

  88. Renner O, Blanco-Aparicio C, Grassow M et al (2008) Activation of phosphatidylinositol 3-kinase by membrane localization of p110alpha predisposes mammary glands to neoplastic transformation. Cancer Res 68:9643–9653

    Article  CAS  PubMed  Google Scholar 

  89. Majumder PK, Grisanzio C, O’Connell F et al (2008) A prostatic intraepithelial neoplasia-dependent p27 Kip1 checkpoint induces senescence and inhibits cell proliferation and cancer progression. Cancer Cell 14:146–155

    Article  CAS  PubMed  Google Scholar 

  90. Kops GJ, Dansen TB, Polderman PE et al (2002) Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature 419:316–321

    Article  CAS  PubMed  Google Scholar 

  91. Courtois-Cox S, Genther Williams SM, Reczek EE et al (2006) A negative feedback signaling network underlies oncogene-induced senescence. Cancer Cell 10:459–472

    Article  CAS  PubMed  Google Scholar 

  92. Acosta JC, O’Loghlen A, Banito A et al (2008) Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133:1006–1018

    Article  CAS  PubMed  Google Scholar 

  93. Carnero A (2006) High throughput screening in drug discovery. Clin Transl Oncol 8:482–490

    Article  CAS  PubMed  Google Scholar 

  94. Shvarts A, Brummelkamp TR, Scheeren F et al (2002) A senescence rescue screen identifies BCL6 as an inhibitor of anti-proliferative p19(ARF)-p53 signaling. Genes Dev 16:681–686

    Article  CAS  PubMed  Google Scholar 

  95. Rowland BD, Bernards R, and Peeper DS (2005) The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. Nat Cell Biol 7:1074–1082

    Article  CAS  PubMed  Google Scholar 

  96. Peeper DS, Shvarts A, Brummelkamp T et al (2002) A functional screen identifies hDRIL1 as an oncogene that rescues RAS-induced senescence. Nat Cell Biol 4:148–153

    Article  CAS  PubMed  Google Scholar 

  97. Castro ME, Leal JF, Lleonart ME et al (2008) Loss-of-function genetic screening identifies a cluster of ribosomal proteins regulating p53 function. Carcinogenesis 29(7):1343–1350

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amancio Carnero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vergel, M., Carnero, A. Bypassing cellular senescence by genetic screening tools. Clin Transl Oncol 12, 410–417 (2010). https://doi.org/10.1007/s12094-010-0528-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-010-0528-2

Keywords