Skip to main content
Log in

Indole and Derivatives Modulate Biofilm Formation and Antibiotic Tolerance of Klebsiella pneumoniae

  • Original Research article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Intercellular communication is a crucial process for the multicellular community in both prokaryotes and eukaryotes. Indole has been recognized as a new member of the signal molecules which enables the regulated control of various bacterial phenotypes. To elucidate the inter-species relationship among enteric microorganisms via indole signaling, Klebsiella pneumoniae (KP) culture was treated with indole solution and examined for the pathogenicity by using various phenotypic tests. Both synthetic and naturally-produced indole preparations had no deteriorating effect on growth and autoaggregative capacity of KP. The results showed that biofilm formation of carbapenem-susceptible K. pneumoniae (KP-S) was clearly induced by indole exposure (≈ 2–10 folds), whereas no significant difference was observed in the resistant counterpart. In addition, the tolerance to β-lactam antibiotics of KP was altered upon exposure to indole and/or derivatives assessed by Kirby–Bauer disk diffusion test. Taken together, our finding indicates the functional role of indole in changing or modulating pathogenic behaviors of other bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ng WL, Bassler BL (2009) Bacterial quorum-sensing network architectures. Annu Rev Genet 43:197–222. https://doi.org/10.1146/annurev-genet-102108-134304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rutherford ST, Bassler BL (2012) Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med 2:a012427. https://doi.org/10.1101/cshperspect.a012427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Novick RP, Geisinger E (2008) Quorum sensing in staphylococci. Annu Rev Genet 42:541–564. https://doi.org/10.1146/annurev.genet.42.110807.091640

    Article  CAS  PubMed  Google Scholar 

  4. Papenfort K, Bassler BL (2016) Quorum sensing signal-response systems in Gram-negative bacteria. Nat Rev Microbiol 14:576–588. https://doi.org/10.1038/nrmicro.2016.89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhao X, Liu X, Xu X, Fu YV (2017) Microbe social skill: the cell-to-cell communication between microorganisms. Sci Bull 62:516–524. https://doi.org/10.1016/j.scib.2017.02.010

    Article  CAS  Google Scholar 

  6. Lee JH, Lee J (2010) Indole as an intercellular signal in microbial communities. FEMS Microbiol Rev 34:426–444. https://doi.org/10.1111/j.1574-6976.2009.00204.x

    Article  CAS  PubMed  Google Scholar 

  7. Lee JH, Wood TK, Lee J (2015) Roles of indole as an interspecies and interkingdom signaling molecule. Trends Microbiol 23:707–718. https://doi.org/10.1016/j.tim.2015.08.001

    Article  CAS  PubMed  Google Scholar 

  8. Bansal T, Alaniz RC, Wood TK, Jayaraman A (2010) The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation. Proc Natl Acad Sci USA 107:228–233. https://doi.org/10.1073/pnas.0906112107

    Article  PubMed  Google Scholar 

  9. Sabag-Daigle A, Soares JA, Smith JN, Elmasry ME, Ahmer BM (2012) The acyl homoserine lactone receptor, SdiA, of Escherichia coli and Salmonella enterica serovar Typhimurium does not respond to indole. Appl Environ Microbiol 78:5424–5431. https://doi.org/10.1128/aem.00046-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lee J, Attila C, Cirillo SL, Cirillo JD, Wood TK (2009) Indole and 7-hydroxyindole diminish Pseudomonas aeruginosa virulence. Microb Biotechnol 2:75–90. https://doi.org/10.1111/j.1751-7915.2008.00061.x

    Article  CAS  PubMed  Google Scholar 

  11. Lee JH, Kim YG, Cho MH, Kim JA, Lee J (2012) 7-Fluoroindole as an antivirulence compound against Pseudomonas aeruginosa. FEMS Microbiol Lett 329:36–44. https://doi.org/10.1111/j.1574-6968.2012.02500.x

    Article  CAS  PubMed  Google Scholar 

  12. Lee JH, Cho HS, Kim Y, Kim JA, Banskota S, Cho MH, Lee J (2013) Indole and 7-benzyloxyindole attenuate the virulence of Staphylococcus aureus. Appl Microbiol Biotechnol 97:4543–4552. https://doi.org/10.1007/s00253-012-4674-z

    Article  CAS  PubMed  Google Scholar 

  13. Hu M, Zhang C, Mu Y, Shen Q, Feng Y (2010) Indole affects biofilm formation in bacteria. Indian J Microbiol 50:362–368. https://doi.org/10.1007/s12088-011-0142-1

    Article  CAS  PubMed  Google Scholar 

  14. Hendrikx T, Schnabl B (2019) Indoles: metabolites produced by intestinal bacteria capable of controlling liver disease manifestation. J Intern Med 286:32–40. https://doi.org/10.1111/joim.12892

    Article  CAS  PubMed  Google Scholar 

  15. Lamb AC, Federico-Perez RA, Xue Z-L (2015) Product in indole detection by Ehrlich’s reagent. Anal Biochem 484:21–23. https://doi.org/10.1016/j.ab.2015.04.033

    Article  CAS  PubMed  Google Scholar 

  16. Turner JM (1961) A new reagent for the assay of indole in the tryptophanase reaction. Biochem J 78:790–792

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Djordjevic D, Wiedmann M, McLandsborough LA (2002) Microtiter plate assay for assessment of Listeria monocytogenes biofilm formation. Appl Environ Microbiol 68:2950. https://doi.org/10.1128/AEM.68.6.2950-2958.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Han TH, Lee J-H, Cho MH, Wood TK, Lee J (2011) Environmental factors affecting indole production in Escherichia coli. Res Microbiol 162:108–116. https://doi.org/10.1016/j.resmic.2010.11.005

    Article  CAS  PubMed  Google Scholar 

  19. Sorroche FG, Spesia MB, Zorreguieta Á, Giordano W (2012) A positive correlation between bacterial autoaggregation and biofilm formation in native Sinorhizobium meliloti isolates from Argentina. Appl Environ Microbiol 78:4092–4101. https://doi.org/10.1128/aem.07826-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Abdel-Rhman SH, El-Mahdy AM, El-Mowafy M (2015) Effect of tyrosol and farnesol on virulence and antibiotic resistance of clinical isolates of Pseudomonas aeruginosa. Biomed Res Int 2015:456463. https://doi.org/10.1155/2015/456463

    Article  CAS  PubMed  Google Scholar 

  21. Haghjoo B, Lee LH, Habiba U, Tahir H, Olabi M, Chu T-C (2013) The synergistic effects of green tea polyphenols and antibiotics against potential pathogens. Adv Biosci Biotechnol 04:959–967. https://doi.org/10.4236/abb.2013.411127

    Article  CAS  Google Scholar 

  22. Jabra-Rizk MA, Meiller TF, James CE, Shirtliff ME (2006) Effect of farnesol on Staphylococcus aureus biofilm formation and antimicrobial susceptibility. Antimicrob Agents Chemother 50:1463–1469. https://doi.org/10.1128/AAC.50.4.1463-1469.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Paramaporn R, Thunchanok Y, Pawina R, Pimonsri M-A, Varaporn V, Tansila N, Altered virulence of non indole-producing pathogenic bacteria by indole signaling. Songklanakarin J Sci Technol (in press)

  24. Kim J, Hong H, Heo A, Park W (2013) Indole toxicity involves the inhibition of adenosine triphosphate production and protein folding in Pseudomonas putida. FEMS Microbiol Lett 343:89–99. https://doi.org/10.1111/1574-6968.12135

    Article  CAS  PubMed  Google Scholar 

  25. Lin G-H, Chen H-P, Shu H-Y (2015) Detoxification of indole by an indole-induced flavoprotein oxygenase from Acinetobacter baumannii. PLoS ONE 10:e0138798. https://doi.org/10.1371/journal.pone.0138798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chant EL, Summers DK (2007) Indole signalling contributes to the stable maintenance of Escherichia coli multicopy plasmids. Mol Microbiol 63:35–43. https://doi.org/10.1111/j.1365-2958.2006.05481.x

    Article  CAS  PubMed  Google Scholar 

  27. Garbe TR, Kobayashi M, Yukawa H (2000) Indole-inducible proteins in bacteria suggest membrane and oxidant toxicity. Arch Microbiol 173:78–82

    Article  CAS  Google Scholar 

  28. Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108. https://doi.org/10.1038/nrmicro821

    Article  CAS  PubMed  Google Scholar 

  29. Koo H, Allan RN, Howlin RP, Stoodley P, Hall-Stoodley L (2017) Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol 15:740. https://doi.org/10.1038/nrmicro.2017.99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kumar A, Alam A, Rani M, Ehtesham NZ, Hasnain SE (2017) Biofilms: survival and defense strategy for pathogens. Int J Med Microbiol 307:481–489. https://doi.org/10.1016/j.ijmm.2017.09.016

    Article  CAS  PubMed  Google Scholar 

  31. Lee JH, Kim YG, Kim CJ, Lee JC, Cho MH, Lee J (2012) Indole-3-acetaldehyde from Rhodococcus sp. BFI 332 inhibits Escherichia coli O157:H7 biofilm formation. Appl Microbiol Biotechnol 96:1071–1078. https://doi.org/10.1007/s00253-012-3881-y

    Article  CAS  PubMed  Google Scholar 

  32. Tan L, Zhao F, Han Q, Zhao A, Malakar PK, Liu H, Pan Y, Zhao Y (2018) High correlation between structure development and chemical variation during biofilm formation by Vibrio parahaemolyticus. Front Microbiol 9:1881. https://doi.org/10.3389/fmicb.2018.01881

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wilson C, Lukowicz R, Merchant S, Valquier-Flynn H, Caballero J, Sandoval J, Okuom M, Huber C, Brooks TD, Wilson E, Clement B, Wentworth CD, Holmes AE (2017) Quantitative and qualitative assessment methods for biofilm growth: a mini-review. Res Rev J Eng Technol 6. http://www.rroij.com/open-access/quantitative-and-qualitative-assessment-methods-for-biofilm-growth-a-minireview-.pdf

  34. Dorken G, Ferguson GP, French CE, Poon WCK (2012) Aggregation by depletion attraction in cultures of bacteria producing exopolysaccharide. J R Soc Interface 9:3490–3502. https://doi.org/10.1098/rsif.2012.0498

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mueller RS, Beyhan S, Saini SG, Yildiz FH, Bartlett DH (2009) Indole acts as an extracellular cue regulating gene expression in Vibrio cholerae. J Bacteriol 191:3504–3516. https://doi.org/10.1128/jb.01240-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nuidate T, Tansila N, Saengkerdsub S, Kongreung J, Bakkiyaraj D, Vuddhakul V (2016) Role of indole production on virulence of Vibrio cholerae using Galleria mellonella larvae model. Indian J Microbiol 56:368–374. https://doi.org/10.1007/s12088-016-0592-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kim J, Shin B, Park C, Park W (2017) Indole-induced activities of β-lactamase and efflux pump confer ampicillin resistance in Pseudomonas putida KT2440. Front Microbiol 8:433. https://doi.org/10.3389/fmicb.2017.00433

    Article  PubMed  PubMed Central  Google Scholar 

  38. Molina-Santiago C, Daddaoua A, Fillet S, Duque E, Ramos JL (2014) Interspecies signalling: Pseudomonas putida efflux pump TtgGHI is activated by indole to increase antibiotic resistance. Environ Microbiol 16:1267–1281. https://doi.org/10.1111/1462-2920.12368

    Article  CAS  PubMed  Google Scholar 

  39. Nikaido E, Giraud E, Baucheron S, Yamasaki S, Wiedemann A, Okamoto K, Takagi T, Yamaguchi A, Cloeckaert A, Nishino K (2012) Effects of indole on drug resistance and virulence of Salmonella enterica serovar Typhimurium revealed by genome-wide analyses. Gut Pathog 4:5. https://doi.org/10.1186/1757-4749-4-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nikaido E, Shirosaka I, Yamaguchi A, Nishino K (2011) Regulation of the AcrAB multidrug efflux pump in Salmonella enterica serovar Typhimurium in response to indole and paraquat. Microbiology 157:648–655. https://doi.org/10.1099/mic.0.045757-0

    Article  CAS  PubMed  Google Scholar 

  41. Vega NM, Allison KR, Samuels AN, Klempner MS, Collins JJ (2013) Salmonella typhimurium intercepts Escherichia coli signaling to enhance antibiotic tolerance. Proc Natl Acad Sci USA 110:14420–14425. https://doi.org/10.1073/pnas.1308085110

    Article  PubMed  Google Scholar 

  42. Nikaido H, Pagès J-M (2012) Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria. FEMS Microbiol Rev 36:340–363. https://doi.org/10.1111/j.1574-6976.2011.00290.x

    Article  CAS  PubMed  Google Scholar 

  43. Zwama M, Yamaguchi A (2018) Molecular mechanisms of AcrB-mediated multidrug export. Res Microbiol 169:372–383. https://doi.org/10.1016/j.resmic.2018.05.005

    Article  CAS  PubMed  Google Scholar 

  44. Blair JMA, Cloeckaert A, Nishino K, Piddock LJV (2013) Alternative explanation for indole-induced antibiotic tolerance in Salmonella. Proc Natl Acad Sci USA 110:E4569. https://doi.org/10.1073/pnas.1318318110

    Article  PubMed  Google Scholar 

  45. Padilla E, Llobet E, Doménech-Sánchez A, Martínez-Martínez L, Bengoechea JA, Albertí S (2010) Klebsiella pneumoniae AcrAB efflux pump contributes to antimicrobial resistance and virulence. Antimicrob Agents Chemother 54:177–183. https://doi.org/10.1128/AAC.00715-09

    Article  CAS  PubMed  Google Scholar 

  46. Hirakawa H, Inazumi Y, Masaki T, Hirata T, Yamaguchi A (2005) Indole induces the expression of multidrug exporter genes in Escherichia coli. Mol Microbiol 55:1113–1126. https://doi.org/10.1111/j.1365-2958.2004.04449.x

    Article  CAS  PubMed  Google Scholar 

  47. Hidalgo-Romano B, Gollihar J, Brown SA, Whiteley M, Valenzuela E Jr, Kaplan HB, Wood TK, McLean RJ (2014) Indole inhibition of N-acylated homoserine lactone-mediated quorum signalling is widespread in Gram-negative bacteria. Microbiology 160:2464–2473. https://doi.org/10.1099/mic.0.081729-0

    Article  CAS  PubMed  Google Scholar 

  48. Kalia VC, Patel SKS, Kang YC, Lee J-K (2019) Quorum sensing inhibitors as antipathogens: biotechnological applications. Biotechnol Adv 37:68–90. https://doi.org/10.1016/j.biotechadv.2018.11.006

    Article  CAS  PubMed  Google Scholar 

  49. Lepri S, Buonerba F, Goracci L, Velilla I, Ruzziconi R, Schindler BD, Seo SM, Kaatz GW, Cruciani G (2016) Indole based weapons to fight antibiotic resistance: a structure–activity relationship study. J Med Chem 59:867–891. https://doi.org/10.1021/acs.jmedchem.5b01219

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the research Grants from the Faculty of Medical Technology (Grant No. MET6204008S) and Prince of Songkla University (Grant No. MET601266S). Thanks to Prof. Dr. Robert S. Philips and Microbiology Unit, Department of Pathology, Faculty of Medicine, Prince of Songkla University for kindly providing an indole-negative E. coli [E. coli BL21(DE3) tn5:tnaA] and K. pneumoniae isolates, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natta Tansila.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaikhan, T., Chuerboon, M., Tippayatham, N. et al. Indole and Derivatives Modulate Biofilm Formation and Antibiotic Tolerance of Klebsiella pneumoniae. Indian J Microbiol 59, 460–467 (2019). https://doi.org/10.1007/s12088-019-00830-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-019-00830-0

Keywords

Navigation