Skip to main content

Advertisement

Log in

Human Milk Microbiota: Transferring the Antibiotic Resistome to Infants

  • Review article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Commensal bacterial population is believed to be a reservoir for antibiotic resistance genes (ARGs). The infant gut microbiota has relatively higher abundance of ARGs than the adults. These genes can get transferred from commensals to pathogens by horizontal gene transfer, which magnifies the spectrum of antibiotic resistance in the environment. The presence of ARGs in neo-nates and infants, with no prior antibiotic exposure, questions their origin in the naïve commensal population. Breast milk microbiota that is responsible for the initial seeding of infant gut microbiota has also been found to harbour a vast array of ARGs. This review discusses the recent findings that indicate the potential of breast milk microbiota to act as a vehicle for transmission of ARGs to infants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ballard O, Morrow AL (2013) Human milk composition: nutrients and bioactive factors. Pediatr Clin N Am 60:49–74. https://doi.org/10.1016/j.pcl.2012.10.002

    Article  Google Scholar 

  2. Le Doare K, Holder B, Bassett A, Pannaraj PS (2018) Mother’s milk: a purposeful contribution to the development of the infant microbiota and immunity. Front Immunol 9:361. https://doi.org/10.3389/fimmu.2018.00361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Toscano M, De Grandi R, Grossi E, Drago L (2017) Role of the human breast milk-associated microbiota on the newborns’ immune system: a mini review. Front Microbiol 8:2100. https://doi.org/10.3389/fmicb.2017.02100

    Article  PubMed  PubMed Central  Google Scholar 

  4. Murphy K, Curley D, O’Callaghan TF, O’Shea CA, Dempsey EM, O’Toole PW, Ross RP, Ryan CA, Stanton C (2017) The composition of human milk and infant faecal microbiota over the first three months of life: a pilot study. Sci Rep 7:40597. https://doi.org/10.1038/srep40597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lonnerdal B (2016) Bioactive proteins in human milk: health, nutrition, and implications for infant formulas. J Pediatr 173:S4–S9. https://doi.org/10.1016/j.jpeds.2016.02.070

    Article  CAS  PubMed  Google Scholar 

  6. Blanton LV, Charbonneau MR, Salih T, Barratt MJ, Venkatesh S, Ilkaveya O, Subramanian S, Manary MJ, Trehan I, Jorgensen JM, Fan YM, Henrissat B, Leyn SA, Rodionov DA, Osterman AL, Maleta KM, Newgard CB, Ashorn P, Dewey KG, Gordon JI (2016) Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Science 351:aad3311. https://doi.org/10.1126/science.aad3311

    Article  CAS  PubMed  Google Scholar 

  7. Diaz Heijtz R (2016) Fetal, neonatal, and infant microbiome: perturbations and subsequent effects on brain development and behavior. Semin Fetal Neonatal Med 21:410–417. https://doi.org/10.1016/j.siny.2016.04.012

    Article  PubMed  Google Scholar 

  8. Oddy WH (2017) Breastfeeding, childhood asthma, and allergic disease. Ann Nutr Metab 70:26–36. https://doi.org/10.1159/000457920

    Article  PubMed  Google Scholar 

  9. Penders J, Stobberingh EE, Savelkoul PH, Wolffs PF (2013) The human microbiome as a reservoir of antimicrobial resistance. Front Microbiol 4:87. https://doi.org/10.3389/fmicb.2013.00087

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ruiz L, Garcia-Carral C, Rodriguez JM (2019) Unfolding the human milk microbiome landscape in the omics era. Front Microbiol 10:1378. https://doi.org/10.3389/fmicb.2019.01378

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ruiz L, Bacigalupe R, Garcia-Carral C, Boix-Amoros A, Arguello H, Silva CB, de Los Angeles Checa M, Mira A, Rodriguez JM (2019) Microbiota of human precolostrum and its potential role as a source of bacteria to the infant mouth. Sci Rep 9:8435. https://doi.org/10.1038/s41598-019-42514-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rodriguez JM (2014) The origin of human milk bacteria: is there a bacterial entero-mammary pathway during late pregnancy and lactation? Adv Nutr 5:779–784. https://doi.org/10.3945/an.114.007229

    Article  PubMed  PubMed Central  Google Scholar 

  13. Biagi E, Quercia S, Aceti A, Beghetti I, Rampelli S, Turroni S, Faldella G, Candela M, Brigidi P, Corvaglia L (2017) The bacterial ecosystem of mother’s milk and infant’s mouth and gut. Front Microbiol 8:1214. https://doi.org/10.3389/fmicb.2017.01214

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kumar H, du Toit E, Kulkarni A, Aakko J, Linderborg KM, Zhang Y, Nicol MP, Isolauri E, Yang B, Collado MC, Salminen S (2016) Distinct patterns in human milk microbiota and fatty acid profiles across specific geographic locations. Front Microbiol 7:1619. https://doi.org/10.3389/fmicb.2016.01619

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hunt KM, Foster JA, Forney LJ, Schutte UM, Beck DL, Abdo Z, Fox LK, Williams JE, McGuire MK, McGuire MA (2011) Characterization of the diversity and temporal stability of bacterial communities in human milk. PLoS ONE 6:e21313. https://doi.org/10.1371/journal.pone.0021313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cabrera-Rubio R, Mira-Pascual L, Mira A, Collado MC (2016) Impact of mode of delivery on the milk microbiota composition of healthy women. J Dev Orig Health Dis 7:54–60. https://doi.org/10.1017/s2040174415001397

    Article  CAS  PubMed  Google Scholar 

  17. Lackey KA, Williams JE, Meehan CL, Zachek JA, Benda ED, Price WJ, Foster JA, Sellen DW, Kamau-Mbuthia EW, Kamundia EW, Mbugua S, Moore SE, Prentice AM, Debela Gindola K, Kvist LJ, Otoo GE, Garcia-Carral C, Jimenez E, Ruiz L, Rodriguez JM, Pareja RG, Bode L, McGuire MA, McGuire MK (2019) What’s normal? Microbiomes in human milk and infant feces are related to each other but vary geographically: the INSPIRE study. Front Nutr 6:45. https://doi.org/10.3389/fnut.2019.00045

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hermansson H, Kumar H, Collado MC, Salminen S, Isolauri E, Rautava S (2019) Breast milk microbiota is shaped by mode of delivery and intrapartum antibiotic exposure. Front Nutr 6:4. https://doi.org/10.3389/fnut.2019.00004

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bag S, Ghosh TS, Banerjee S, Mehta O, Verma J, Dayal M, Desigamani A, Kumar P, Saha B, Kedia S, Ahuja V, Ramamurthy T, Das B (2019) Molecular insights into antimicrobial resistance traits of commensal human gut microbiota. Microb Ecol 77:546–557. https://doi.org/10.1007/s00248-018-1228-7

    Article  CAS  PubMed  Google Scholar 

  20. Moore AM, Patel S, Forsberg KJ, Wang B, Bentley G, Razia Y, Qin X, Tarr PI, Dantas G (2013) Pediatric fecal microbiota harbor diverse and novel antibiotic resistance genes. PLoS ONE 8:e78822. https://doi.org/10.1371/journal.pone.0078822

    Article  PubMed  PubMed Central  Google Scholar 

  21. von Wintersdorff CJ, Penders J, van Niekerk JM, Mills ND, Majumder S, van Alphen LB, Savelkoul PH, Wolffs PF (2016) Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front Microbiol 7:173. https://doi.org/10.3389/fmicb.2016.00173

    Article  Google Scholar 

  22. Casals-Pascual C, Vergara A, Vila J (2018) Intestinal microbiota and antibiotic resistance: perspectives and solutions. Hum Microbiome J 9:11–15. https://doi.org/10.1016/j.humic.2018.05.002

    Article  Google Scholar 

  23. Lerner A, Matthias T, Aminov R (2017) Potential effects of horizontal gene exchange in the human gut. Front Immunol 8:1630. https://doi.org/10.3389/fimmu.2017.01630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Canton R, Morosini MI (2011) Emergence and spread of antibiotic resistance following exposure to antibiotics. FEMS Microbiol Rev 35:977–991. https://doi.org/10.1111/j.1574-6976.2011.00295.x

    Article  CAS  PubMed  Google Scholar 

  25. Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74:417–433. https://doi.org/10.1128/mmbr.00016-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gumpert H, Kubicek-Sutherland JZ, Porse A, Karami N, Munck C, Linkevicius M, Adlerberth I, Wold AE, Andersson DI, Sommer MOA (2017) Transfer and persistence of a multi-drug resistance plasmid in situ of the infant gut microbiota in the absence of antibiotic treatment. Front Microbiol 8:1852. https://doi.org/10.3389/fmicb.2017.01852

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fouhy F, Ogilvie LA, Jones BV, Ross RP, Ryan AC, Dempsey EM, Fitzgerald GF, Stanton C, Cotter PD (2014) Identification of aminoglycoside and beta-lactam resistance genes from within an infant gut functional metagenomic library. PLoS ONE 9:e108016. https://doi.org/10.1371/journal.pone.0108016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Duranti S, Lugli GA, Mancabelli L, Turroni F, Milani C, Mangifesta M, Ferrario C, Anzalone R, Viappiani A, van Sinderen D, Ventura M (2017) Prevalence of antibiotic resistance genes among human gut-derived bifidobacteria. Appl Environ Microbiol 83:e02894-16. https://doi.org/10.1128/aem.02894-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ravi A, Valdes-Varela L, Gueimonde M, Rudi K (2018) Transmission and persistence of IncF conjugative plasmids in the gut microbiota of full-term infants. FEMS Microbiol Ecol 94:fix158. https://doi.org/10.1093/femsec/fix158

    Article  CAS  Google Scholar 

  30. Saksena R, Gaind R, Sinha A, Kothari C, Chellani H, Deb M (2018) High prevalence of fluoroquinolone resistance amongst commensal flora of antibiotic naive neonates: a study from India. J Med Microbiol 67:481–488. https://doi.org/10.1099/jmm.0.000686

    Article  CAS  PubMed  Google Scholar 

  31. Ravi A, Avershina E, Foley SL, Ludvigsen J, Storro O, Oien T, Johnsen R, McCartney AL, L’Abee-Lund TM, Rudi K (2015) The commensal infant gut meta-mobilome as a potential reservoir for persistent multidrug resistance integrons. Sci Rep 5:15317. https://doi.org/10.1038/srep15317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pannaraj PS, Li F, Cerini C, Bender JM, Yang S, Rollie A, Adisetiyo H, Zabih S, Lincez PJ, Bittinger K, Bailey A, Bushman FD, Sleasman JW, Aldrovandi GM (2017) Association between breast milk bacterial communities and establishment and development of the infant gut microbiome. JAMA Pediatr 171:647–654. https://doi.org/10.1001/jamapediatrics.2017.0378

    Article  PubMed  PubMed Central  Google Scholar 

  33. Huang MS, Cheng CC, Tseng SY, Lin YL, Lo HM, Chen PW (2019) Most commensally bacterial strains in human milk of healthy mothers display multiple antibiotic resistance. Microbiologyopen 8:e00618. https://doi.org/10.1002/mbo3.618

    Article  CAS  PubMed  Google Scholar 

  34. Chen PW, Tseng SY, Huang MS (2016) Antibiotic susceptibility of commensal bacteria from human milk. Curr Microbiol 72:113–119. https://doi.org/10.1007/s00284-015-0925-4

    Article  CAS  PubMed  Google Scholar 

  35. Ojo-Okunola A, Nicol M, du Toit E (2018) Human breast milk bacteriome in health and disease. Nutrients 10:e1643. https://doi.org/10.3390/nu10111643

    Article  CAS  PubMed  Google Scholar 

  36. Marin M, Arroyo R, Espinosa-Martos I, Fernandez L, Rodriguez JM (2017) Identification of emerging human mastitis pathogens by MALDI-TOF and assessment of their antibiotic resistance patterns. Front Microbiol 8:1258. https://doi.org/10.3389/fmicb.2017.01258

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hudelson SE, McConnell MS, Bagenda D, Piwowar-Manning E, Parsons TL, Nolan ML, Bakaki PM, Thigpen MC, Mubiru M, Fowler MG, Eshleman SH (2010) Emergence and persistence of nevirapine resistance in breast milk after single-dose nevirapine administration. AIDS 24:557–561. https://doi.org/10.1097/QAD.0b013e3283346e60

    Article  CAS  PubMed  Google Scholar 

  38. Kozak K, Charbonneau D, Sanozky-Dawes R, Klaenhammer T (2015) Characterization of bacterial isolates from the microbiota of mothers’ breast milk and their infants. Gut Microbes 6:341–351. https://doi.org/10.1080/19490976.2015.1103425

    Article  PubMed  Google Scholar 

  39. Pärnänen K, Karkman A, Hultman J, Lyra C, Bengtsson-Palme J, Larsson DGJ, Rautava S, Isolauri E, Salminen S, Kumar H, Satokari R, Virta M (2018) Maternal gut and breast milk microbiota affect infant gut antibiotic resistome and mobile genetic elements. Nat Commun 9:3891. https://doi.org/10.1038/s41467-018-06393-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hoiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35:322–332. https://doi.org/10.1016/j.ijantimicag.2009.12.011

    Article  CAS  PubMed  Google Scholar 

  41. Ahmed MN, Porse A, Sommer MOA, Hoiby N, Ciofu O (2018) Evolution of antibiotic resistance in biofilm and planktonic Pseudomonas aeruginosa populations exposed to subinhibitory levels of ciprofloxacin. Antimicrob Agents Chemother 62:e00320-18. https://doi.org/10.1128/aac.00320-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Virmani R, Hasija Y, Singh Y (2018) Effect of homocysteine on biofilm formation by mycobacteria. Indian J Microbiol 58:287–293. https://doi.org/10.1007/s12088-018-0739-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Das L, Singh Y (2018) Quorum sensing inhibition: a target for treating chronic wounds. In: Kalia VC (ed) Biotechnological applications of quorum sensing inhibitors. Springer, Singapore, pp 111–126

    Chapter  Google Scholar 

  44. Partridge SR, Kwong SM, Firth N, Jensen SO (2018) Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev 31:e00088-17. https://doi.org/10.1128/cmr.00088-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dubey GP, Ben-Yehuda S (2011) Intercellular nanotubes mediate bacterial communication. Cell 144:590–600. https://doi.org/10.1016/j.cell.2011.01.015

    Article  CAS  PubMed  Google Scholar 

  46. Dzidic M, Boix-Amoros A, Selma-Royo M, Mira A, Collado MC (2018) Gut microbiota and mucosal immunity in the neonate. Med Sci 6:e56. https://doi.org/10.3390/medsci6030056

    Article  CAS  Google Scholar 

  47. Lazar V, Ditu LM, Pircalabioru GG, Gheorghe I, Curutiu C, Holban AM, Picu A, Petcu L, Chifiriuc MC (2018) Aspects of gut microbiota and immune system interactions in infectious diseases, immunopathology, and cancer. Front Immunol 9:1830. https://doi.org/10.3389/fimmu.2018.01830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Libertucci J, Young VB (2019) The role of the microbiota in infectious diseases. Nat Microbiol 4:35–45. https://doi.org/10.1038/s41564-018-0278-4

    Article  CAS  PubMed  Google Scholar 

  49. Maji A, Misra R, Dhakan DB, Gupta V, Mahato NK, Saxena R, Mittal P, Thukral N, Sharma E, Singh A, Virmani R, Gaur M, Singh H, Hasija Y, Arora G, Agrawal A, Chaudhry A, Khurana JP, Sharma VK, Lal R, Singh Y (2018) Gut microbiome contributes to impairment of immunity in pulmonary tuberculosis patients by alteration of butyrate and propionate producers. Environ Microbiol 20:402–419. https://doi.org/10.1111/1462-2920.14015

    Article  CAS  PubMed  Google Scholar 

  50. Sood U, Bajaj A, Kumar R, Khurana S, Kalia VC (2018) Infection and microbiome: impact of tuberculosis on human gut microbiome of indian cohort. Indian J Microbiol 58:123–125. https://doi.org/10.1007/s12088-018-0706-4

    Article  PubMed  PubMed Central  Google Scholar 

  51. D’Argenio V (2018) The prenatal microbiome: a new player for human health. High Throughput 7:e38. https://doi.org/10.3390/ht7040038

    Article  PubMed  Google Scholar 

  52. Backhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, Li Y, Xia Y, Xie H, Zhong H, Khan MT, Zhang J, Li J, Xiao L, Al-Aama J, Zhang D, Lee YS, Kotowska D, Colding C, Tremaroli V, Yin Y, Bergman S, Xu X, Madsen L, Kristiansen K, Dahlgren J, Wang J (2015) Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17:690–703. https://doi.org/10.1016/j.chom.2015.04.004

    Article  CAS  PubMed  Google Scholar 

  53. Matuszkiewicz-Rowinska J, Malyszko J, Wieliczko M (2015) Urinary tract infections in pregnancy: old and new unresolved diagnostic and therapeutic problems. Arch Med Sci 11:67–77. https://doi.org/10.5114/aoms.2013.39202

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bromiker R, Ernest N, Meir MB, Kaplan M, Hammerman C, Schimmel MS, Schlesinger Y (2013) Correlation of bacterial type and antibiotic sensitivity with maternal antibiotic exposure in early-onset neonatal sepsis. Neonatology 103:48–53. https://doi.org/10.1159/000342215

    Article  CAS  PubMed  Google Scholar 

  55. Liu R, Lin L, Wang D (2016) Antimicrobial prophylaxis in caesarean section delivery. Exp Ther Med 12:961–964. https://doi.org/10.3892/etm.2016.3350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

UGC-D. S. Kothari Post-doctoral fellowship to LD and CSIR Junior research fellowship to VS are duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lahari Das or Yogendra Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, L., Virmani, R., Sharma, V. et al. Human Milk Microbiota: Transferring the Antibiotic Resistome to Infants. Indian J Microbiol 59, 410–416 (2019). https://doi.org/10.1007/s12088-019-00824-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-019-00824-y

Keywords

Navigation