Skip to main content
Log in

Advances in Taxonomy of Genus Phoma: Polyphyletic Nature and Role of Phenotypic Traits and Molecular Systematics

  • Review Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Phoma is a highly polyphyletic genus with its unclear species boundaries. The conventional system of identification is functional but it has its limitations. Besides morphological studies, chemotaxonomy, secondary metabolite and protein profiling have been assessed for the classification and identification of these fungi. Molecular datasets have provided a better outlook towards the phylogenetic and evolutionary trends of Phoma. Molecular markers such as ITS-rDNA, tubulin, actin, translation elongation factor have been widely used by the taxonomists to demarcate species. However, outcomes gained up till now represent preliminary step towards the study of Phoma systematics and a combined approach would be beneficial in the understanding of this polyphyletic group members. Lately, on the base of molecular phylogeny of the type species of the seven Phoma sections a new teleomorph family, Didymellaceae has been established, besides the Phaeosphaeriaceae related to sect. Paraphoma anamorphs, and the Leptosphaeriaceae to sect. Heterospora anamorphs. The estimated ratio is about 70 % of the recognized Phoma-like species can be associated with the Didymellaceae ascomycetous family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aveskamp MM, de Gruyter J, Crous PW (2008) Biology and recent developments in the systematics of Phoma, a complex genus of major quarantine significance. Fung Diversity 31:1–18

    Google Scholar 

  2. Aveskamp MM, de Gruyter J, Woudenberg JHC, Verkley GJM, Crous PW (2010) Highlights of the Didymellaceae: a polyphasic approach to characterise Phoma and related pleosporalean genera. Stud Mycol 65:1–60

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Frisvad JC, Andersen B, Thrane U (2008) The use of secondary metabolite profiling in chemotaxonomy of filamentous fungi. Mycol Res 112:231–240

    Article  CAS  PubMed  Google Scholar 

  4. Saccardo PA (1880) Conspectus generum fungorum Italiae inferiorum, nempe ad Sphaeropsideas, Melanconieas et Hyphomyceteas pertinentium, systemate sporologico dispositorum. Michelia 2:1–38

    Google Scholar 

  5. Boerema GH, Bollen GJ (1975) Conidiogenesis and conidial septation as differentiating criteria between Phoma and Ascochyta. Persoonia 8:111–144

    Google Scholar 

  6. Boerema GH (1997) Contributions towards a monograph of Phoma (Coelomycetes)—V. subdivision of the genus in sections. Mycotaxon 64:321–333

    Google Scholar 

  7. Boerema GH, de Gruyter J, Noordeloos ME, Hamers MEC (2004) Phoma identification manual: differentiation of specific and infra-specific taxa in culture. CABI Publishing, Oxfordshire

    Book  Google Scholar 

  8. Kövics GJ, Sándor E, Rai MR, Irinyi L (2013) Phoma-like fungi of soybeans. Crit Rev Microbiol. http://informahealthcare.com/doi/abs/10.3109/1040841X.2012.755948

  9. de Gruyter J, Aveskamp MM, Woudenberg JHC, Verkley GJM, Groenewald JZ, Crous PW (2009) Molecular phylogeny of Phoma and allied anamorph genera: towards a reclassification of the Phoma complex. Mycol Res 113:508–519

    Article  PubMed  Google Scholar 

  10. Rajak RC, Rai MK (1983) Effect of different factors on the morphology and cultural characters of 18-species and 5-varieties of Phoma. I. Effect of different media. Bibl Mycologia 91:301–317

    Google Scholar 

  11. Rajak RC, Rai MK (1984) A new leaf-spot disease of Jasminum pubescence caused by Phoma herbarum. Indian J Mycol Plant Pathol 42(2):173

    Google Scholar 

  12. Irinyi L, Kövics GJ, Rai MK, Sándor E (2006) Studies of evolutionary relationships of Phoma species based on phylogenetic markers. pp. 99–113 In: 4th International Plant Protection Symposium at Debrecen University, 18–19 October 2006. Recent developments of IPM. Proceedings. Kövics GJ, Dávid I (eds) Debrecen University, Hungary

  13. Heiny DK (1990) Phoma probocis sp. nov. pathogenic on Convolvulus arvensis. Mycotaxon 36:457–471

    Google Scholar 

  14. Heiny DK (1994) Field survival of Phoma proboscis and synergism with herbicides for control of field bindweed. Plant Dis 78:1156–1164

    Article  Google Scholar 

  15. Rajak RC, Farkya S, Hasija SK, Pandey AK (1990) Fungi associated with congress weed (Parthenium hysterophorus L.). Proc Nat Acad Sci India 60:165–168

    Google Scholar 

  16. Heiny DK, Templeton GE (1991) Effects of spore concentration, temperature and dew period on disease of field bindweed caused by Phoma proboscis. Phytopathology 81:905–909

    Article  Google Scholar 

  17. Fogliano V, Marchese A, Scaloni A, Ritieni A, Visconti AG, Randazzo G, Graniti A (1998) Characterization of a 60 kDa phytotoxic glycoprotein produced by Phoma tracheiphila and its relation to malseccin. Physiol Mol Plant Pathol 53(3):149–161

    Article  CAS  Google Scholar 

  18. Baxter CJ, Magan N, Lane B, Wildman HG (1998) Influence of water activity and temperature on in vitro growth of surface cultures of a Phoma sp., and production of the pharmaceutical metabolites, squalestatin S1 and S2. Appl Microbiol Biotechnol 3:328–332

    Google Scholar 

  19. Pandey S, Pandey AK (2000) Mycoherbicidal potential of some fungi against Lantana camara L.: a preliminary observation. J Trop For 16:28–32

    Google Scholar 

  20. Rai MK (2002) Diversity and biotechnological applications of Indian species of Phoma. In: Rao GP, Manoharachari C, Bhat DJ, Rajak RC, Lakhanpal TN (eds) Frontiers of fungal diversity in India. International Book Distributing Co, Lucknow, pp 179–204

    Google Scholar 

  21. Zimin L, Paul RJ, William F (2003) A cyclic carbonate and related polyketides from a marine-derived fungus of the genus Phoma. Phytochemistry 64:571–574

    Article  Google Scholar 

  22. Shibazaki M, Taniguchi M, Yokoi T, Nagai K, Watanabe M, Suzuki K, Yamamoto T (2004) YM-215343, a novel antifungal compound from Phoma sp. QNO4621. J Antibiot 57:379–382

    Article  CAS  PubMed  Google Scholar 

  23. Koyama N, Nagahiro T, Yamaguchi Y, Ohshiro T, Masuma R, Tomoda H, Omura S (2005) Spylidone, a novel inhibitor of lipid droplet accumulation in mouse macrophages produced by Phoma sp. FKI-1840. J Antibiot 58:338–345

    Article  CAS  PubMed  Google Scholar 

  24. Cimmino A, Andolfi A, Berestetskiy A, Evidente A (2008) Production of phytotoxins by Phoma exigua var. exigua, a potential mycoherbicide against perennial thistles. J Agric Food Chem 56:630–634

    Article  Google Scholar 

  25. Pedras M, Soledade C, Yang Y (2008) Structural and biological activity of maculansin A, a phytotoxin from the phytopathogenic fungus Leptosphaeria maculans. Phytochemistry 69:2966–2971

    Article  CAS  PubMed  Google Scholar 

  26. Hoffman AM, Mayer SG, Strobel GA, Hess WM, Sovocool GW, Grange AH, Harper JK, Arif AM, Grant DM, Kelley-Swift EG (2008) Purification, identification and activity of phomodione, a furandione from an endophytic Phoma species. Phytochemistry 69:1049–1056

    Article  CAS  PubMed  Google Scholar 

  27. Liermann JC, Kolshorn H, Opatz T, Thines E, Anke H (2009) Xanthepinone, an antimicrobial polyketide from a soil fungus closely related to Phoma medicaginis. J Nat Prod 72:1905–1907

    Article  CAS  PubMed  Google Scholar 

  28. Rai MK, Deshmukh P, Gade A, Ingle A, Kövics GJ, Irinyi L (2009) Phoma Saccardo: distribution, secondary metabolite production and biotechnological applications. Crit Rev Microbiol 35:182–196

    Article  CAS  PubMed  Google Scholar 

  29. Qin S, Hussain H, Schulz B, Draeger S, Krohn K (2010) Two new metabolites, epoxydine A and B, from Phoma sp. Helv Chim Acta 93:169–174

    Article  CAS  Google Scholar 

  30. Pellegrino C, Gilardi G, Gullino ML, Garibaldi A (2010) Detection of Phoma valerianellae in lamb’s lettuce seeds. Phytoparasitica 38:159–165

    Article  Google Scholar 

  31. Garibaldi A, Gilardi G, Gullino ML (2010) First report of leaf spot caused by Phoma multirostrata on Fuchsia × hybrida in Italy. Plant Dis 94:382

    Article  Google Scholar 

  32. Strobel G, Singh SK, Riyaz-Ul-Hassan S, Mitchell AM, Geary B, Sears J (2011) An endophytic/pathogenic Phoma sp. from creosote bush producing biologically active volatile compounds having fuel potential. FEMS Microbiol Lett 320:87–94

    Article  CAS  PubMed  Google Scholar 

  33. Wang X, Wang J, Gao J, Yang L (2012) First report of leaf spot disease on Schisandra chinensis caused by Phoma glomerata in China. Plant Dis 96:289

    Article  Google Scholar 

  34. Li YP, Wright DG, Lanoiselet V, Wang CP, Eyres N, Real D, You MP, Barbetti MJ (2012) First report of Phoma herbarum on tedera (Bituminaria bituminosa var. albomarginata) in Australia. Plant Dis 96:769

    Article  Google Scholar 

  35. Patil VB, Mali AM, Mahamuni RJ, Chavan NS, Kamble SS (2012) First report of leaf spot caused by Phoma costarricensis on Delphinium malabaricum in Western Ghats of India. Plant Dis 96:1074

    Article  Google Scholar 

  36. Rajak RC, Rai MK (1982) Effect of different colours of light and temperatures on the morphology of three species of Phoma in vitro. Jabalpur Univ 1:6

    Google Scholar 

  37. Rai MK (1993) Identity and taxonomy of hitherto unreported pathogen causing leaf-spot disease of ginger in India. Mycotaxon 46:329–333

    Google Scholar 

  38. Rai MK, Rajak RC (1993) Effect of different factors on the morphology and cultural characters of 18 species and 5 varieties of Phoma III. effect of different carbon sources. Indian J Mycol Plant Pathol 23:311–313

    Google Scholar 

  39. Boerema GH, de Gruyter J (1998) Contributions towards a monograph of Phoma (Coelomycetes)—VII. Section Sclerophomella: taxa with thick-walled pseudoparenchymatous pycnidia. Persoonia 17:81–95

    Google Scholar 

  40. Boerema GH, de Gruyter J (1999) Contributions towards a monograph of Phoma (Coelomycetes) III.—Supplement. Additional species of section Plenodomus. Persoonia 17:273–280

    Google Scholar 

  41. Kövics GJ, Pandey AK, Rai MK (2005) Phoma Saccardo and related genera: some new perspectives in taxonomy and biotechnology. In: Deshmukh SK, Rai MK (eds) Biodiversity of fungi: their role in human life. Science Publishers Inc, Enfield (NH), Plymouth, pp 129–154

    Google Scholar 

  42. Bakerspigel A, Lowe D, Rostras A (1981) The isolation of Phoma eupyrena from a human lesion. Arch Dermatol 117:362–363

    Article  CAS  PubMed  Google Scholar 

  43. Rai MK (1989) Phoma sorghina infection in human being. Mycopathol 105:167–170

    Article  CAS  Google Scholar 

  44. Rosen T, Rinaldi MJ, Tschen JA, Stern JK, Cernoch P (1996) Cutaneous lesions due to Pleurophoma (Phoma) complex. Southern Med J 89:431–433

    Article  CAS  PubMed  Google Scholar 

  45. Rishi K, Font RL (2003) Keratitis caused by an unusual fungus. Phoma species. Cornea 22:166–168

    Article  PubMed  Google Scholar 

  46. Balis E, Velegraki A, Fragou A, Pefanis A, Kalabokas T, Mountokalakis T (2006) Lung mass caused by Phoma exigua. Scand J Infect Dis 38:552–555

    Article  PubMed  Google Scholar 

  47. Tullio V, Banche G, Allizond V, Roana J, Mandras N, Scalasa D, Panzoneb M, Cervetti O, Valle S, Carlone N, Cuffini AM (2010) Non-dermatophyte moulds as skin and nail foot mycosis agents: Phoma herbarum, Chaetomium globosum and Microascus cinereus. Fung Biol 114:345–349

    Article  Google Scholar 

  48. Roehm CE, Salazar JC, Haqstrom N, Valdez TA (2012) Phoma and Acremonium invasive fungal rhinosinusitis in congenital acute lymphocytic leukemia and literature review. Int J Pediatr Otorhi 76:1387–1391

    Article  Google Scholar 

  49. Irinyi L, Kövics GJ, Sándor E (2009) Taxonomical re-evalution of Phoma-like soybean pathogenic fungi. Mycol Res 113:249–260

    Article  PubMed  Google Scholar 

  50. Kövics GJ (1995) Comments to the taxonomical problems of some plant pathogenic fungi (genera Ascochyta, Phoma, Phyllosticta). Review. (in Hungarian with English summary) Növényvédelem (Plant Protection) 31:307–315

    Google Scholar 

  51. Kövics GJ, de Gruyter J, van der Aa HA (1999) Phoma sojicola comb. nov., and other hyaline-spored coelomycetes pathogenic on soybean. Mycol Res 103:1065–1070

    Article  Google Scholar 

  52. Castell-Miller CV, Zeyen RJ (2007) Infection and development of Phoma medicaginis on moderately resistant and susceptible alfalfa genotypes. Can J Plant Pathol 29:290–298

    Article  Google Scholar 

  53. Guarro J, Gene J, Stchigel AM (1999) Developments in fungal taxonomy. Clin Microbiol Rev 12:454–500

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Tandon RN, Bilgrami KS (1960) A new species of Phoma on the phylloclades of Muehlenbeckia platyclados. Proc Nat Acad Sci India 30B:331–333

    Google Scholar 

  55. Bilgrami KS (1963) Association of a new species of Phoma with Pleospora herbarum (Pers.) Rabh. Curr Sci 32:174–175

    Google Scholar 

  56. Agarwal GP, Sahni VP (1964) Fungi causing plant diseases at Jabalpur (Madhya Pradesh)-IX. Mycopathol 22:245–248

    Article  Google Scholar 

  57. Dutta BG, Ghosh GR (1965) Soil fungi from Orissa IV. soil fungi of paddy fields. Mycologia 25:316–322

    CAS  Google Scholar 

  58. Chandra S, Tandon RN (1965) Two new leaf-spot fungi. Curr Sci 34:565–566

    Google Scholar 

  59. Chandra S, Tandon RN (1966) Three new leaf-infecting fungi from Allahabad. Mycopathol 29:273–276

    Article  Google Scholar 

  60. Hasija SK (1966) Additions to the fungi of Jabalpur (Madhya Pradesh) V. Mycopathol 28:33–41

    Article  CAS  Google Scholar 

  61. Shreemali JL (1972) Some new members of Sphaeropsidales from India. Indian Phytopathol 25:58–60

    Google Scholar 

  62. Shreemali JL (1973) Some new leaf infecting fungi. Indian J Mycol Plant Pathol 3:112–116

    Google Scholar 

  63. Jamaluddin M, Tandon P, Tandon RN (1975) A fruit rot of aonla (Phyllanthus emblica L.) caused by Phoma sp. Proc Nat Acad Sci India 45:75–76

    Google Scholar 

  64. Rai JN, Misra JK (1981) A new species of Phoma from Indian alkaline soil. Curr Sci 50:377

    Google Scholar 

  65. Rao S, Thirumalachar U (1981) Phoma exigua infecting brinjal leaves. Indian Phytopath 34:37

    Google Scholar 

  66. Rai MK (1985) Taxonomic studies of species of Phoma isolated from air. J Econ Taxon Bot 7:645–647

    Google Scholar 

  67. Rai MK (1986) Two new diseases of Albizzia lebbek and Jasminum sambac. Acta Bot Indica 14:170–171

    Google Scholar 

  68. Rai MK (1986) Two new diseases of cultivated plant. Acta Bot Indica 14:238–239

    Google Scholar 

  69. Rai MK (2000) Phoma research in India: a review. In: Rai MK, Varma A, Rajak RC (eds) Integrated management of plant resources. Scientific Publisher (India), Jodhpur, pp 337–371

    Google Scholar 

  70. Rai MK, Rajak RC (1982) A new leaf-spot disease of Ailanthus excelsa Roxb. Curr Sci 51:98–99

    Google Scholar 

  71. Rai MK, Rajak RC (1982) A report of leaf-spot disease of Holoptelea integrifolia planch caused by Phoma sorghina. Indian J Mycol Plant Path 12:342

    Google Scholar 

  72. Rai MK, Rajak RC (1986/1987) A new disease of Citrus medica and the identity of its causal organism Phoma exigua var. foeveta (Foister) Boerema. Indian J Mycol Plant Pathol 16:320–321

  73. Rai MK, Rajak RC (1993) Distinguishing characteristics of some Phoma species. Mycotaxon 48:389–414

    Google Scholar 

  74. Rajak RC, Rai MK (1982) Species of Phoma from legumes. Indian Phytopath 35:609–611

    Google Scholar 

  75. Rajak RC, Rai MK (1984) Effect of different factors on the morphology and cultural characters of 18 species and 5 varieties of Phoma. II. Effect of different pH. Nova Hedwigia 40:299–311

    Google Scholar 

  76. Aveskamp MM, Verkley GJM, de Gruyter J, Murace MA, Perello A, Woudenberg JHC, Groenewald JZ, Crous PW (2009) DNA phylogeny reveals polyphyly of Phoma section Peyronellaea and multiple taxonomic novelties. Mycologia 101:363–382

    Article  CAS  PubMed  Google Scholar 

  77. Noordeloos ME, de Gruyter J, Eijk GW, Roeijmans HJ (1993) Production of dendritic crystals in pure cultures of Phoma and Ascochyta and its value as a taxonomic character relative to morphology, pathology and cultural characteristics. Mycol Res 97:1343–1350

    Article  Google Scholar 

  78. Kövics GJ, de Gruyter J (1995) Comparative studies of esterase isozyme patterns of some Phoma species occurring on soybean. (in Hungarian with English summary). Sci Public Agric Univ Debrecen 31:191–207

    Google Scholar 

  79. Tiwari VV, Gade AK, Rai MK (2013) A study of phylogenetic variations among Indian Phoma tropica species by RAPD-PCR and ITS-rDNA sequencing. Ind J Biotechnol 12:187–194

    CAS  Google Scholar 

  80. Irinyi L, Gade AK, Ingle AP, Kövics GJ, Rai MK, Sándor E (2009) Morphology and molecular biology of Phoma. In: Gherbawy Y, Mach RL, Rai MK (eds) Current advances in molecular mycology. Nova Science Publishers Inc, New York, pp 171–203

    Google Scholar 

  81. Aveskamp MM, Woudenberg JHC, de Gruyter J, Turco E, Groenewald JZ, Crous PW (2009) Development of taxon-specific sequence characterized amplified region (SCAR) markers based on actin sequences and DNA amplification fingerprinting (DAF): a case study in the Phoma exigua species complex. Mol Plant Pathol 10:403–414

    Article  CAS  PubMed  Google Scholar 

  82. de Gruyter J, Woudenberg JHC, Aveskamp MM, Verkley GJM, Groenewald JZ, Crous PW (2010) Systematic reappraisal of species in Phoma section Paraphoma, Pyrenochaeta and Pleurophoma. Mycologia 102:1066–1081

    Article  PubMed  Google Scholar 

  83. Goker M, Garcia-Blazquez G, Voglmayr H, Telleria MT, Martin MP (2009) Molecular taxonomy of phytopathogenic fungi: a case study in Peronospora. PLoS ONE 4:e6319

    Article  PubMed Central  PubMed  Google Scholar 

  84. Knowlton N (1993) Sibling species in the sea. Annu Rev Ecol Syst 24:189–216

    Article  Google Scholar 

  85. Grube M, Kroken S (2000) Molecular approaches and concept of species and species complexes in lichenized fungi. Mycol Res 104:1284–1294

    Article  CAS  Google Scholar 

  86. Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous Ascomycetes. Appl Env Microbiol 61:1323–1330

    CAS  Google Scholar 

  87. Cleveland DW, Sullivan KF (1985) Molecular biology and genetics of tubulin. Annu Rev Biochem 54:331–365

    Article  CAS  PubMed  Google Scholar 

  88. Joshi HC, Cleveland DW (1990) Diversity among tubulin subunits: toward what functional end? Cell Motil Cytoskel 16:159–163

    Article  CAS  Google Scholar 

  89. Löwe J, Li H, Downing KH, Nogales E (2001) Refined structure of alpha beta-tubulin at 3.5 a resolution. J Mol Biol 313:1045–1057

    Article  PubMed  Google Scholar 

  90. Saussede-Aim J, Dumontet C (2009) Regulation of tubulin expression: multiple overlapping mechanisms. Int J Med Medic Sci 1:290–296

    CAS  Google Scholar 

  91. Lee RCH, Williams BAP, Brown AMV, Adamson ML, Keeling PJ (2008) α- and β-tubulin phylogenies support a close relationship between the microsporidia Brachiola algerae and Antonospora locustae. J Eukaryot Microbiol 55:388–392

    Article  CAS  PubMed  Google Scholar 

  92. Dangre DM, Rathod DP, Gade AK, Rai MK (2009) An in silico molecular evolutionary analysis of selected species of Phoma: a comparative approach. J Proteomics Bioinform 2:295–309

    Article  CAS  Google Scholar 

  93. Hays SM, Swanson J, Selker EU (2002) Identification and characterization of the genes encoding the core histones and histone variants of Neurospora crassa. Genetics 160:961–973

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Luger K (2006) Dynamic nucleosomes. Chromosome Res 14:5–16

    Article  CAS  PubMed  Google Scholar 

  95. Yun CS, Nishida H (2011) Distribution of introns in fungal histone genes. PLoS ONE 6:e16548

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Wunsch MJ, Bergstrom GC (2011) Genetic and morphological evidence that Phoma sclerotioides, a causal agent of brown root rot of alfalfa, is composed of a species complex. Phytopathology 101:594–610

    Article  PubMed  Google Scholar 

  97. Goldstein PZ, DeSalle R (2010) Integrating DNA barcode data and taxonomic practice: determination, discovery and description. BioEssays 33:135–147

    Article  Google Scholar 

  98. Seifert KA (2008) Integrating DNA barcoding into the mycological sciences. Persoonia 21:162–167

    Google Scholar 

  99. Seifert KA (2009) Progress towards DNA barcoding of fungi. Mol Ecol Res 9:83–89

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to György János Kövics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rai, M.K., Tiwari, V.V., Irinyi, L. et al. Advances in Taxonomy of Genus Phoma: Polyphyletic Nature and Role of Phenotypic Traits and Molecular Systematics. Indian J Microbiol 54, 123–128 (2014). https://doi.org/10.1007/s12088-013-0442-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-013-0442-8

Keywords

Navigation